
По запасам ниобиевых руд Россия также находится на втором месте после Бразилии. Большая их часть выявлена на юге Восточной Сибири, около 20% — в Мурманской области. (> 90% Nb добывается в Бразилии)

Основные месторождения тантала и распределение его балансовых запасов по субъектам РФ, %

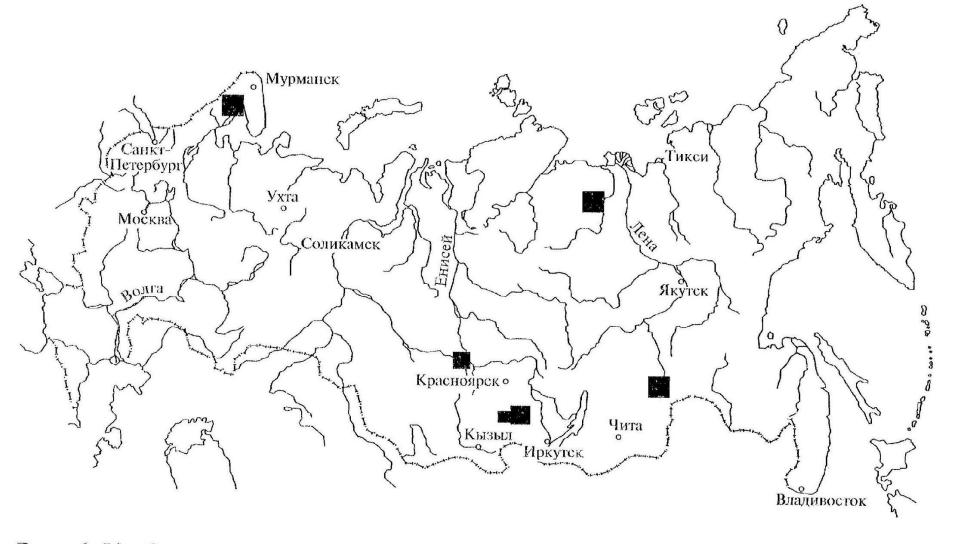
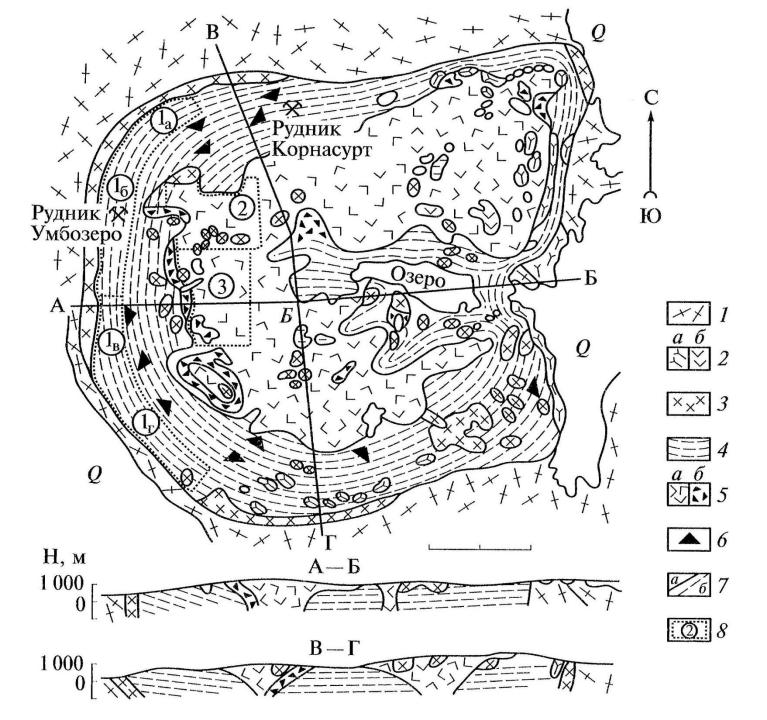
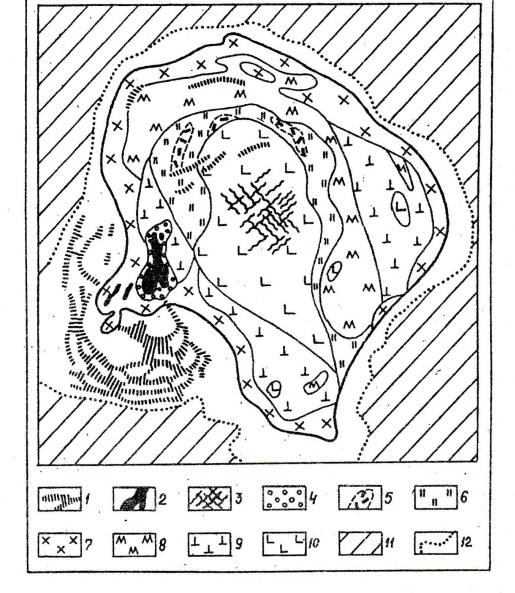


Рис. 6.52. Схема размещения основных месторождений ниобия в России (по А. В. Елютину, Л. Б. Чистову, Е. М. Эпштейну, 1999)




Рис. 6.51. Схема размещения основных месторождений тантала в России (по В. В. Рябцеву и др., 2006):

I-3- месторождения (I- ниобий-танталовые, 2- танталовые, 3- разрабатываемые); 4- предприятия по переработке руд

Основные месторождения

Недропользователь,	Геолого- промышленный тип	Запасы, ты	ыс.т Nb₂O₅	Содержание	Добыча в 2007 г., т Nb₂O₅
месторождение		ABC ₁	C ₂	Nb₂O₅ в рудах, %	
ООО «Ловозерский Г	ОК»				
Ловозерское (Мурманская обл.)	Нефелиновые сиениты с лопаритом	сведения секретны			
ОАО «Горные технол	погии»				
Катугинское (Читинская обл.)	Щелочные метасоматиты с пирохлором	473,4	135,5	0,35	0
Нераспределённый с	фонд				
Улуг-Танзекское (Республика Тыва)	Щелочные метасоматиты с колумбитом	711	358,6	0,15	
Белозиминское (Иркутская обл.)	Карбонатиты с пирохлором	сведения секретны			

Геологическая схема Ковдорского массива (по В.И. Терновому, Б.В. Афанасьеву, Б.И. шимову, О.М. Римской-Корсаковой, А.А. Кухаренко и др.)

1 — кальцитовае карбонатиты; 2 — апатитовые и апатит-магнетитовые руды; 3 — форстерит-магнетитовые руды; 4 — шит-форстеритовые руды; 5 — флогопитовые метасоматиты; 6 — флогопит-диопсид-форстеритовые породы; 7 — ийош, мельтейгиты; 8 — турьяиты, мелилититы; 9 — якупирангиты, пироксениты; 10 — оливиниты; 11 — гнейсы и гнейсошиты; 12 — ореол фенитизации

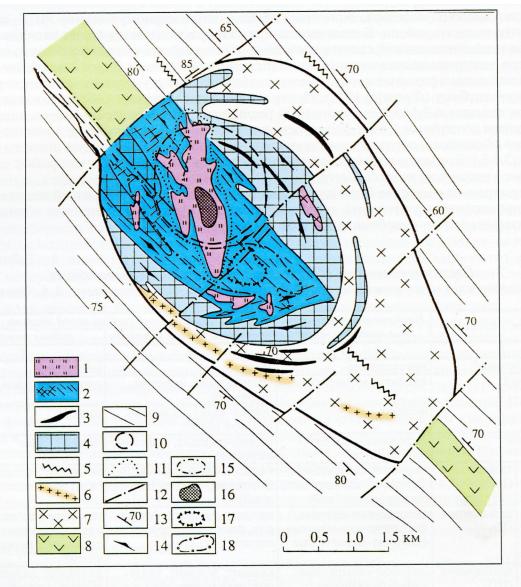
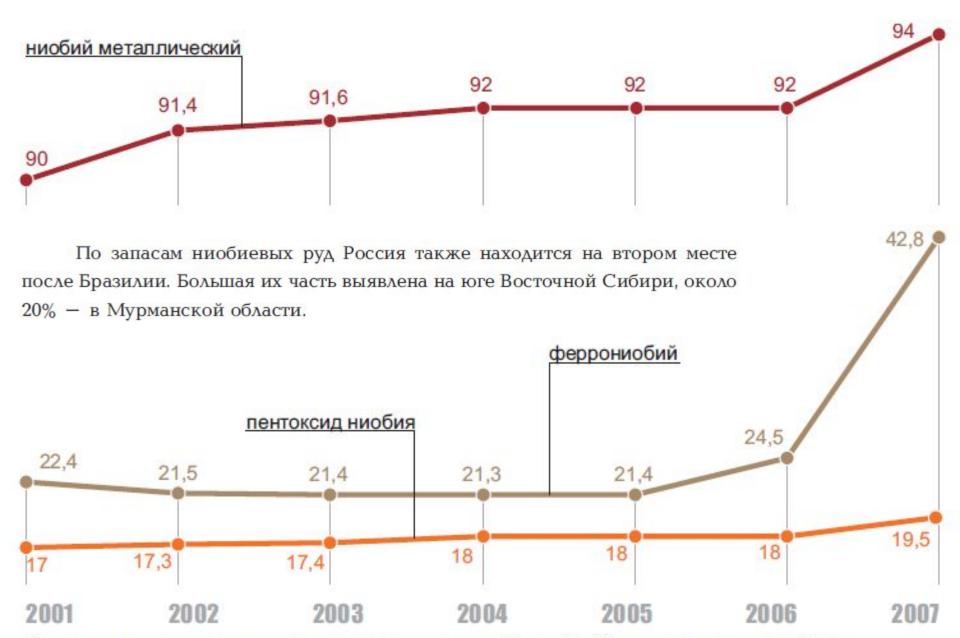
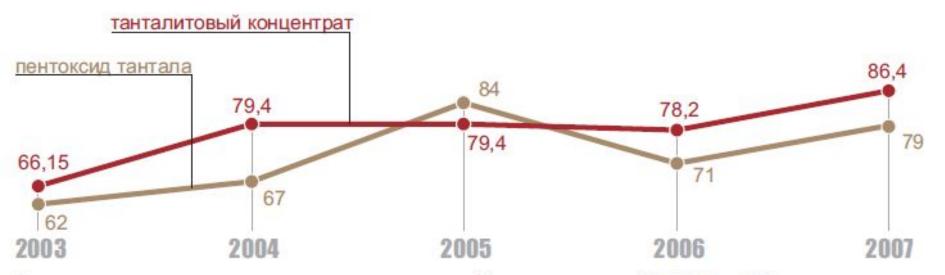




Рис. 2.1.3. Схема геологического строения Белозиминского массива

1—анкеритовые карбонатиты IV стадии; 2—амфибол-кальцитовые карбонатиты III стадии; 3 - диопсид- и форстрит-кальцитовые карбонатиты II стадии; 5— пикритовые порфриты; 6— нефелиновые сиениты; 7— ийолит-мельтейгиты; 8— габбро-диабазы; 9— слюдистые сланцы; 10— площать развития останцов пикритовых порфиритов-альнеитов; 11—ореол анкеритизации; 12—разломы; 13—элементы заления сланцеватости-слоистости; 14—элементы залегания полосчатости в карбонатитах; 15—18—области развития руд: 15-галенит-сфалеритовых, 16— паризит-бастнезит-монацитовых, 17—апатит-магнетит-пирохлоровых, 18—апатит-пирохлоровых /Фролов и др.,2003/

Среднегодовые цены на металлический ниобий, пентоксид ниобия и феррониобий в 2001-2007 гг. на американском рынке, дол./кг

Среднегодовые цены на танталитовый концентрат (30% Та₂О₅) на западноевропейском рынке и пентоксид тантала на американском рынке в 2003-2007 гг., дол./кг

Большая часть запасов тантала в России связана с комплексными тантал-ниобиевыми месторождениями, руды которых содержат попутные бериллий, литий, рубидий, цезий и редкоземельные металлы. Эти руды труднообогатимы, а содержание пентоксида тантала в них колеблется в пределах 0.013-0.024%, тогда как содержания $\mathrm{Ta}_2\mathrm{O}_5$ в легкообогатимых рудах месторождений тантала зарубежных стран: Австралии, Таиланда, ДР Конго, Канады — значительно выше (в среднем 0.04-0.05%).

Использование МСБ редкоземельных металлов Российской Федерации в 2007 г.

Ставка налога на добычу

Число действующих эксплуатационных лицензий	12
Число действующих лицензий на условиях предпринимательского риска	0
Добыча из недр, тыс.т ∑TR ₂ O ₃	90,2
Производство концентратов РЗМ, тыс.т ∑TR ₂ O ₃	0,08
Производство редкоземельной продукции (карбонаты P3M), тыс.т в пересчете на ∑TR₂O₃	3,2
Средние за 9 месяцев 2008 г. спотовые цены оксидов РЗМ (FOB порты Китая), дол./кг	оксид иттрия (99,99%) – 5 оксид церия (99%) – 4,8 оксид европия (99%) – 556,6 оксид лантана (99%) – 8,9 оксид неодима (99%) – 31,5

В большинстве российских месторождений содержание суммы триоксидов редкоземельных элементов ниже, чем в зарубежных: оно редко превышает 1%, в то время как средние содержания ΣTR_2O_3 в рудах разрабатываемых китайских месторождений — 5%.

8%

97% РЗЭ мира поставляет КНР (Баян-Обо)

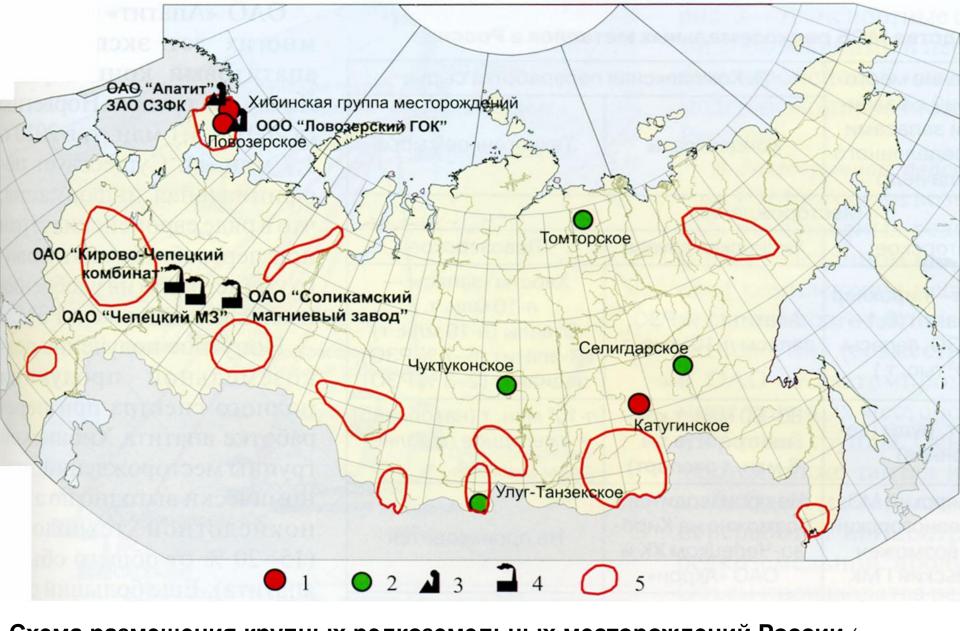
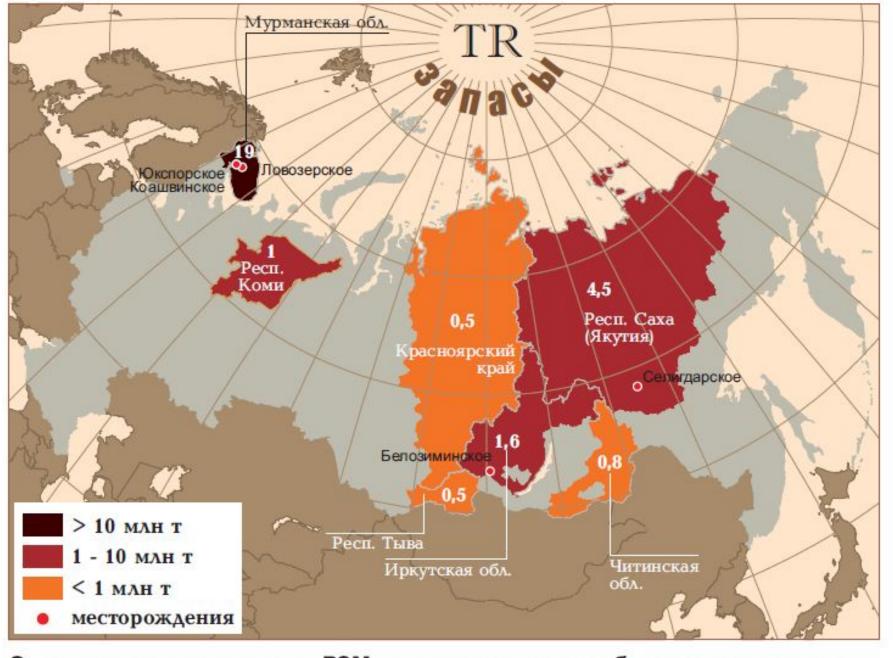



Схема размещения крупных редкоземельных месторождений России (по Кременецкому и др.,2012): 1- 2 — крупные месторождения, учтенные Государственным балансом, распределенного (1) и нераспределенного (2) фондов недр; 3-4 — добывающие (3) и перерабатывающие (4) предприятия; 5 — Центры экономического развития РФ

Основные месторождения РЗМ и распределение их балансовых запасов по субъектам РФ, млн т в пересчёте на сумму триоксидов РЗМ

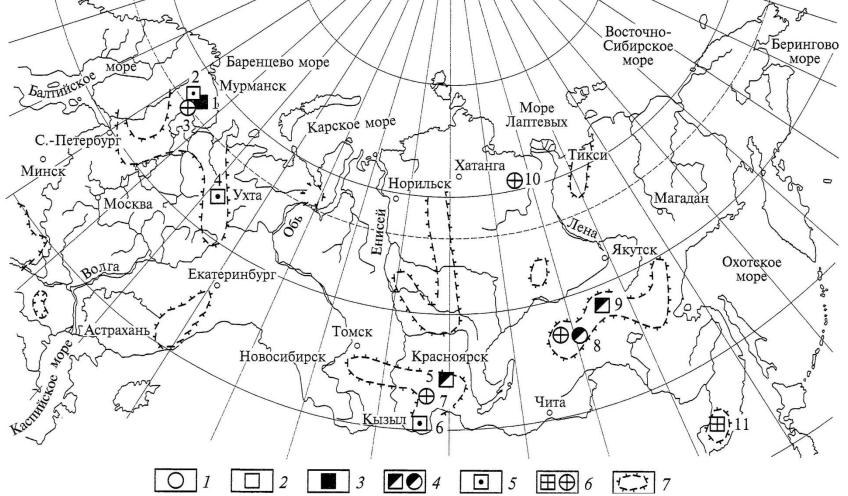
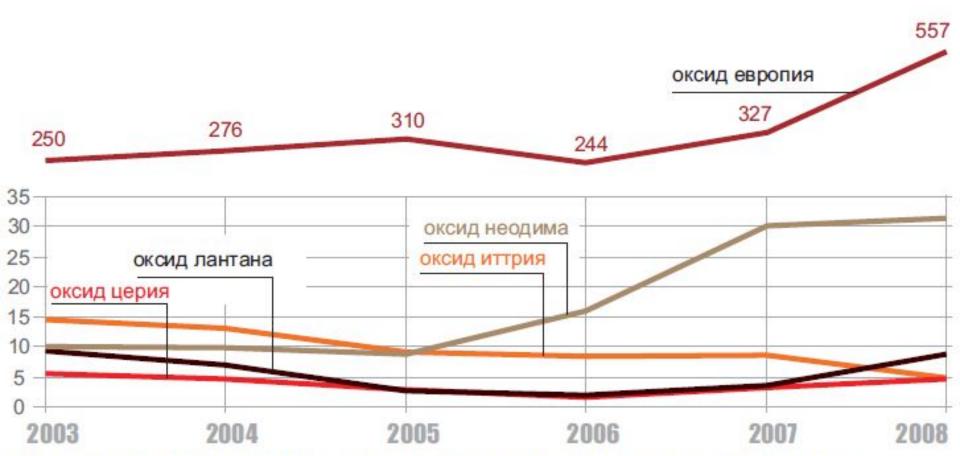
основные месторождения редкоземельных металлов РФ

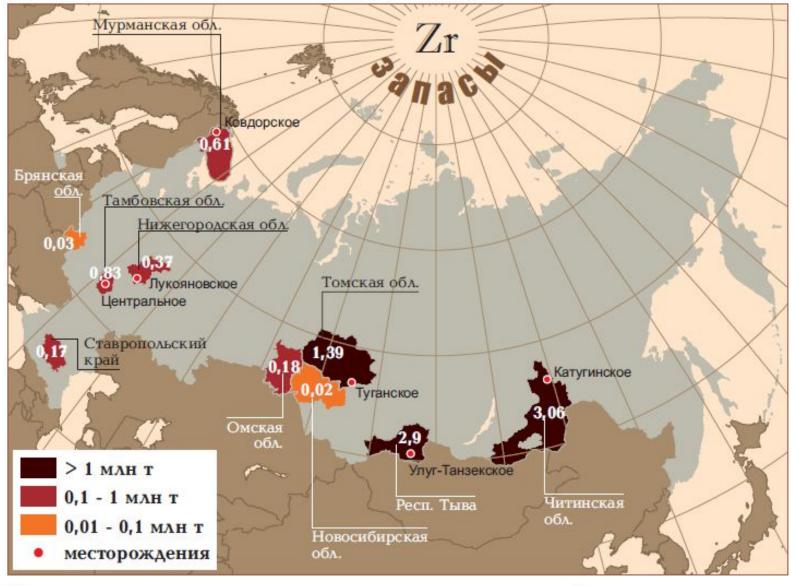
(Ставский и др, 2012)

Недропользователь,	Геолого- промышленный тип	Запасы,млн т ∑TR ₂ O ₃		Доля в балансовых	Содержание ∑TR,О, в рудах,	Добыча в 2011 г., тыс.т				
месторождение		ABC ₁	C ₂	запасах РФ, %		ΣTR_2O_3				
	ООО «Ловозерский ГОК»									
Ловозерское (Мурманская обл.)	Нефелиновые сиениты с лопаритом	2,7	4,4	25,4	1,12	3,4				
ОАО «Апатит»										
Юкспорское (Мурманская обл.)	Апатит-нефелиновый	2,2	0	7,9	0,39	22,7				
Коашвинское (Мурманская обл.)	Апатит-нефелиновый	2,6	0,7	11,8	0,41	10,2				
Нераспределенный фонд										
Селигдарское (Респ. Саха (Якутия))	Апатитовый в карбонатитах	4,4	0	15,8	0,35					
Белозиминское (Иркутская	Коры выветривания	0	1,6	5,7	0,9					

карбонатитов

обл.)


Рис. 6.49. Основные месторождения редкоземельных металлов (РЗМ) и перспективные площади России (по В. С. Кудрину, Л. Б. Чистову, 1996): 1 — месторождения, в рудах которых РЗМ относятся к основным компонентам; 2 — месторождения с попутными РЗМ; 3—5 — месторождения, учтенные Госбалансом (3 — эксплуатируемые, 4 — резервные, 5 — с неактивными запасами
(на обозримую перспективу)); 6 — промышленно-перспективные месторождепия, не учтенные Госбалансом; 7 — территории, потенциально перспективные
на выявление промышленных месторождений (1 — Ловозерское, 2 — Хибинская
группа месторождений, 3 — Аллуайв, 4 — Ярегское, 5 — Белозиминское, 6 —
Улуг-Танзекское, 7 — Арысканское, 8 — Катугинское, 9 — Селигдарское, 10 —
Томторское, 11 — угольные месторождения Приморья)

Основные месторождения РЗЭ (REE, TR)

Недропользователь, месторождение	Геолого- промышленный тип	Запасы, млн т ∑TR₂O₃		Содержание ∑TR₂O₃ в	Добыча в 2007 г., тыс.т	
		ABC ₁	C ₂	рудах, %	∑TR ₂ O ₃	
ООО «Ловозерский Г	ОК»					
Ловозерское (Мурманская обл.)	Нефелиновые сиениты с лопаритом	2,7	4,4	1,12	3,6	
ОАО «Апатит»						
Юкспорское (Мурманская обл.)	Апатит-	2,2	0	0,39	23,1	
Коашвинское (Мурманская обл.)	нефелиновый	2,6	0,7	0,41	12,1	
Нераспределённый фонд						
Селигдарское (Республика Саха (Якутия))	Апатитовый в карбонатитах	4,4	0	0,35		
Белозиминское (Иркутская обл.)	Коры выветривания карбонатитов	0	1,6	0,9		

Среднегодовые цены на оксиды РЗМ в 2003-2007 гг. и средняя цена за 9 месяцев 2008 г., спот, FOB порты Китая, дол./кг

Основные месторождения циркония и распределение балансовых запасов диоксида циркония по субъектам РФ, млн т

Основные месторождения циркония РФ (Ставский и 20121

981,5

ООО «ГПК «Титан», ООО «ГРК «Титан»

830,2

ООО «Фирма "Геостар"»

374

ОАО «Горные технологии»

361,2

Нераспределенный фонд

1935,4

0

0

0

2724,3

964,8

10,3

8,7

3.9

32,2

30,3

0,2

0

0

0

7,72 кг/куб.м

3,12 кг/куб.м

12,11 кг/куб.м

1,58%

0,4%

др.,2017	<u> </u>						
Недропользователь,	Геолого-промышленный тип	Запасы, тыс.т ZrO ₂		Доля в балансовых	Среднее	Добыча в	
месторождение		ABC ₁	$\mathbf{C_2}$	запасах РФ, %	содержание ZrO ₂ в рудах	2011 г., тыс.т ZrO ₂	
ОАО «Ковдорский ГОК»							
Ковдорское (Мурманская обл.)	Коренное бадделеит-апатит- магнетитовое	487,9	104,5	6,2	0,17%	24,7	
ЗАО «Туганский ГОК "Ильменит"»							

Россыпное циркон-рутил-

Россыпное циркон-рутил-

Россыпное циркон-рутил-

Коренное циркон-пирохлор-

Коренное циркон-пирохлор-

ильменитовое

ильменитовое

ильменитовое

криолитовое

колумбитовое

Туганское (Томская обл.)

Центральное (Тамбовская обл.)

Лукояновское (Нижегородская

Катугинское (Забайкальский

Улуг-Танзекское (Респ. Тыва)

обл.)

край)

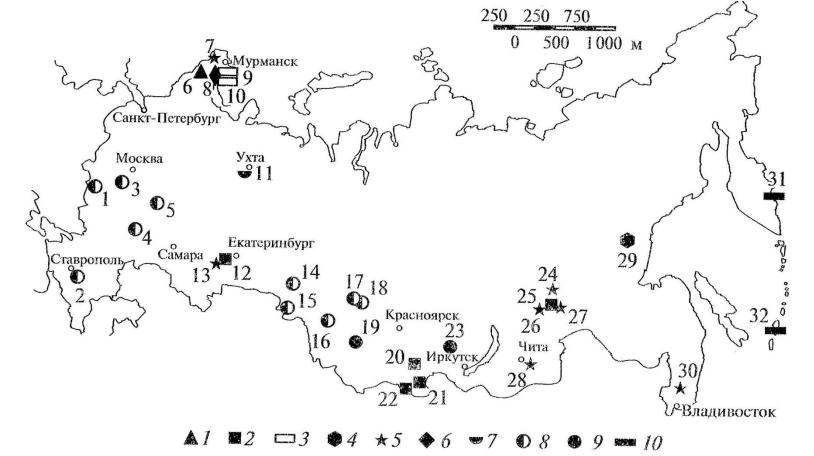
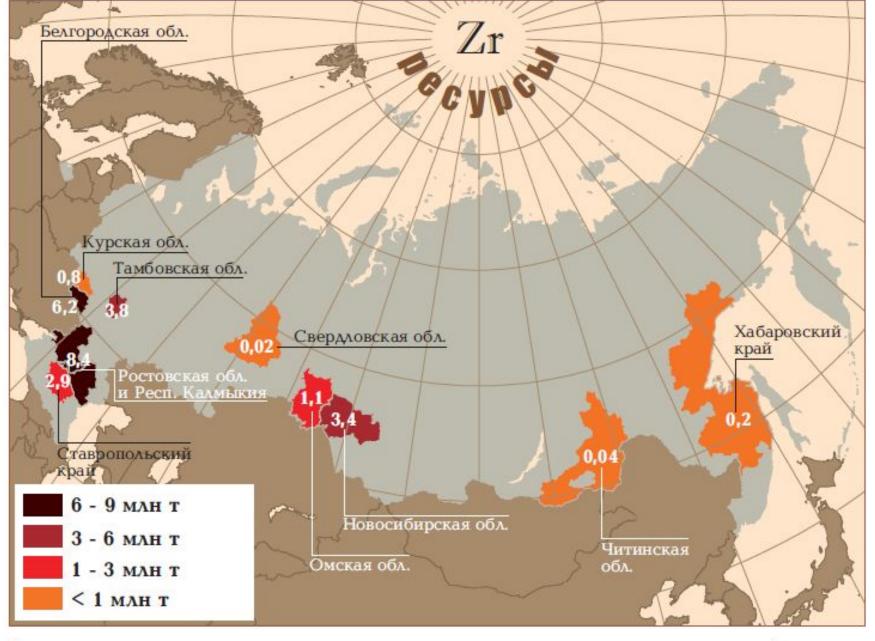
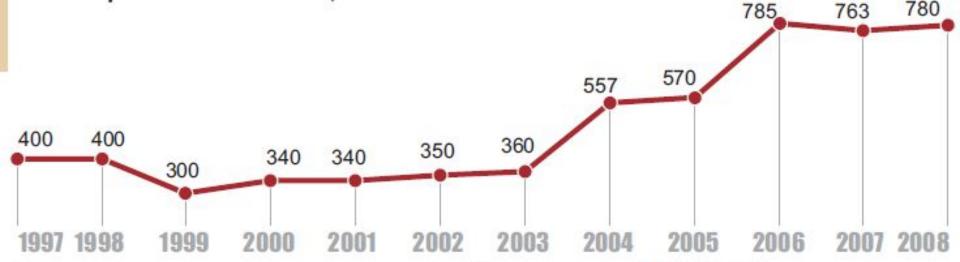



Рис. 6.50. Размещение основных месторождений циркония в России (по Л. 3. Быховскому и др., 2006):


типы месторождений: 1-4 — коренные месторождения циркония (1 — бадделеит-апатит-магнетитовые, 2 — циркон-пирохлор-колумбитовые, 3 — эвдиалитовые, 4 — гельциркон-бадделентовые в коре выветривания); 5-7 — коренные месторождения титана (5 — ильменит-титаномагнетитовые, 6 — лопаритовые, 7 лейкоксеновые); 8-10 — россыпные месторождения (8 — комплексные титана и циркония (ильменита, рутила, циркона), 9 — титана (ильменита), 10 — титаномагнетита). Месторождения: 1 — Унечское; 2 — Бешпагирское; 3 — Россыпи Центрального Европейского района; 4 — Центральное; 5 — Лукояновское; 6 — Ковдорское; 7 — Гремяха-Вырмес; 8 — Ловозерское; 9 — Аллуйав; 10 — Сахарйок; 11 — Ярегское; 12 — Вишневогорское; 13 — Медведевское; 14 — Тарское; 15 — Борисово-Павлодарское; 16 — Ордынское; 17 — Георгиевское; 18 — Туганское; 19 — Николаевское; 20 — Зашихинское; 21 — Улуг-Танзекское; 22 — Ары; 23 — Тулунское; 24 — Куранахское; 25 — Катугинское; 26 — Чинейское; 27 — Б.Сейим; 28 — Кручининское; 29 — Алгаминское; 30 — Ариадненское; 31 — россыпи Камчатки (Хапактырское и др.); 32 — россыпи Курильских островов (Ручарское и др.)

Распределение прогнозных ресурсов диоксида циркония категорий P_1 , P_2 и P_3 , приведенных к условной категории P_1 , по субъектам $P\Phi$, млн т (по состоянию на 1.01.2007 г.)

Основные месторождения

Основные месторождения							
Недропользователь,	Геолого- промышленный		ы, тыс.т O ₂	Среднее содержание	Добыча в 2007 г., тыс.т ZrO₂		
месторождение	тип	ABC ₁	C ₂	ZrO₂ в рудах			
ОАО «Ковдорский ГОК»							
Ковдорское (Мурманская обл.)	Коренное бадделеит-апатит- магнетитовое	510	104,5	0,17%	25,3		
ЗАО «Туганский ГОК	"Ильменит"»						
Туганское (Томская обл.)	Россыпное циркон-рутил- ильменитовое	981,8	0	7,72 кг/куб.м	0,2		
ООО «ГПК «Титан», ООО «ГРК «Титан»							
Центральное (Тамбовская обл.)	Россыпное циркон-рутил- ильменитовое	830,2	0	3,12 кг/куб.м	0		
ООО «Фирма "Геоста	p"»						
Лукояновское (Нижегородская обл.)	Россыпное циркон-рутил- ильменитовое	374	0	12,11 кг/куб.м	0		
ОАО «Горные технологии»							
Катугинское (Читинская обл.)	Коренное циркон-пирохлор- криолитовое	356,8	2697,8	1,6%	0		
Нераспределённый фонд							
Улуг-Танзекское (Республика Тыва)	Коренное циркон-пирохлор- колумбитовое	1935,4	964,8	0,4%			

Среднегодовые цены на цирконовый концентрат (65% ZrO2), продуцентов США, FOB порты США в 1997-2007 гг. и средняя цена за 10 месяцев 2008 г., дол./т

Российские запасы диоксида циркония составляют 10% мировых; по их количеству страна занимает третье место в мире после Австралии и ЮАР. Основная часть запасов сконцентрирована на юге Сибири (в Читинской, Томской областях и Республике Тыва), а также в Тамбовской и Мурманской областях.

Из импортного цирконового и отечественного бадделеитового концентратов в России выпускают: на Чепецком механическом заводе в Республике Удмуртия — губчатый цирконий и продукцию из циркониевых сплавов для атомной энергетики; на Щербинском заводе в Московской области — электроплавленые огнеупоры для стекольной промышленности; на Челябинском абразивном заводе — циркониевый корунд для обдирочного инструмента; на Ключевском ферросплавном заводе в Свердловской области — цирконийсодержащие ферросплавы для легирования стали.