

Географическая оболочка — это цельная оболочка Земли, где ее составляющие (верхняя часть литосферы, нижняя часть атмосферы, гидросфера и биосфера) тесно взаимодействуют, обмениваясь веществом и энергией. Географическая оболочка имеет сложный состав и строение. [1].

Продуктом взаимодействия компонентных оболочек, точнее, следствием этого взаимодействия являются разнообразные формы рельефа, осадочные породы и почвы, возникновение и развитие живых организмов, в том числе человека.

Понятие географической оболочки сформировалось в географии постепенно.

Впервые мысль о наличии «наружной оболочки» Земли высказал в 1910 г. русский географ П.И. Броунов.

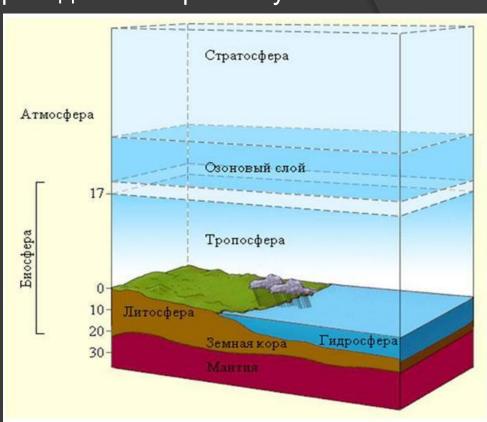
Позже, в **1932** г., академик **А.А. Григорьев** применил термин «физико-географическая оболочка».

А академик С.В. Калесник предложил назвать физико-географическую оболочку просто географической оболочкой.

Кроме того, Ю.К. Ефремов в 1950 г. предложил термин «ландшафтная оболочка», А.Г. Исаченко в 1965 г. — «эпигеосфера» (т.е. наружная сфера).

Григорьев Андрей Александрович, географ, академик АН СССР

Географическая оболочка не имеет четких границ, поэтому ученые проводят их по-разному.


Обычно за верхнюю границу принимают озоновый экран, расположенный на высоте около 25— 30 км, где задерживается большая часть ультрафиолетовой солнечной радиации, которая губительно действует на живые организмы.

В то же время основные процессы, определяющие погоду и климат, а следовательно, формирование ландшафтов, протекают в тропосфере, высота которой изменяется по широтам от 16–18 км у экватора до 8 км над полюсами. Нижней границей на суше чаще всего считают подошву коры выветривания. Эта часть земной поверхности подвержена наиболее сильным изменениям под воздействием атмосферы, гидросферы и

В океане нижней границей географической оболочки считают его дно.

живых организмов. Ее максимальная

мощность около одного километра.

Таким образом, общая мощность географической оболочки на суше составляет около 30 км.

Этапы развития географической оболочки

В истории развития географической оболочки выделяют три этапа:

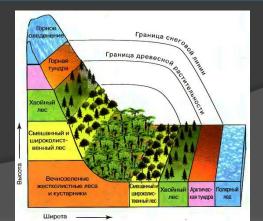
- добиогенный (4 млрд. 570 млн. лет) охватывает эры: катархей, архей, протерозой; на этом этапе шло формирование земной коры, а также сформировался Тихий океан; атмосфера была, но состав ее был иным, чем сейчас; живые организмы существовали уже с архея, но их воздействие на географическую оболочку было ничтожно; почвы отсутствовали;
- 2) <u>биогенный</u> (570 млн. лет 40 тыс. лет) включает эры: палеозой, мезозой и почти весь кайнозой; на этом этапе увеличивается содержание кислорода в атмосфере, пышно расцветает жизнь на суше и в воде, возникает озоновый экран в географической оболочке, формируются почвы;
- 3) антропогенный (40 тыс. лет наше время). Этот этап связан с появлением человека разумного (Homo sapiens), к которому принадлежит и современный человек.

Географическая оболочка прошла долгий и сложный путь развития. Возраст Земли составляет около 4,5-4,6 миллиардов лет.

Основные закономерности географической оболочки

Свойства географической оболочки

целостность

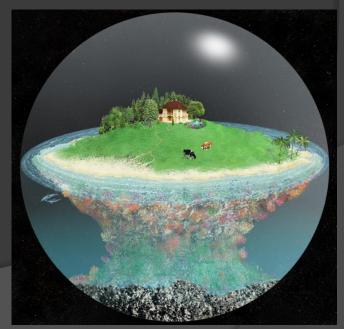

географическая зональность

ритмичность

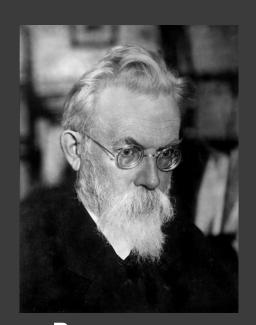
круговорот веществ обеспечивается, благодаря постоянному обмену веществ и энергии между ее составляющими

взаимодействие всех компонентов связывает их в одну материальную систему, в которой изменение любого элемента провоцирует изменение и остальных звеньев

Биосфера как часть географической оболочки

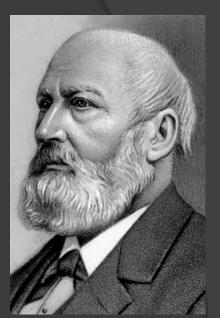


Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими.


Биосфера начала формироваться не позднее, чем 3,8 млрд лет назад, когда на нашей планете стали зарождаться первые организмы.

Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу.

Биосфера представляет собой совокупность всех живых организмов.



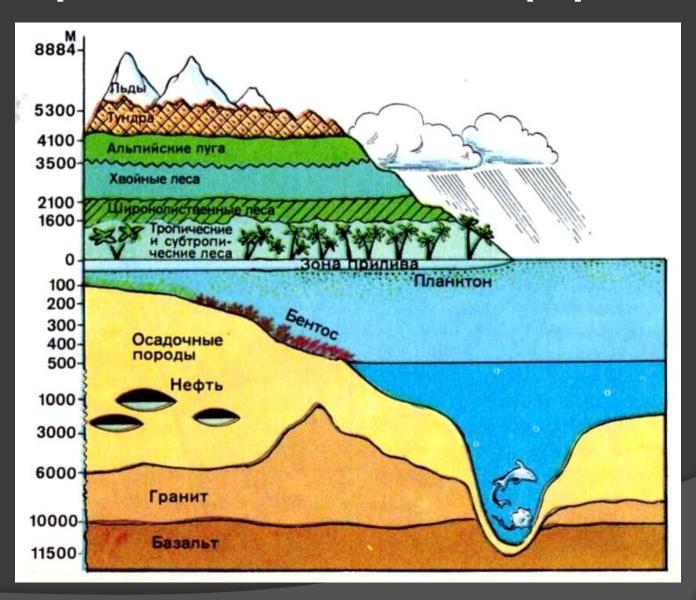
Термин «биосфера» первым ввел геолог Эдуард Зюсс в 1875 году для обозначения пространства на поверхности Земли, где существует жизнь [2].

Владимир Иванович Вернадский (1863-1945 гг.)



Эдуард Зюсс (1831 -1914) австрийский геолог

Более полное определение понятия «биосфера» было предложено *В. И. Вернадским*. Он стал первым, кто отвел жизни главенствующую роль трансформирующей силы нашей планеты, беря во внимание жизнедеятельность организмов как в настоящем, так и прошлом.


Взаимодействие биосферы с другими оболочками

Функции биосферы

энергетическая (накопление и преобразование энергии) окислительно-восстановительная (интенсификация этих процессов в пространстве под действием живого вещества) газовая (способность изменять и поддерживать газовый состав среды обитания) концентрационная (способность собирать в своем теле рассеянные в пространстве атомы химических элементов) деструктивная (разложение как органических остатков, так и косного вещества) транспортная (перенесение вещества и энергии в результате активного движения организмов) средообразующая (изменение физико-химических параметров среды) информационную (накопление, закрепление в наследственных структурах, передача информации) и др.

Пределы жизни в биосфере

Структура и состав биосферы

По представлениям В.И. Вернадского, биосфера включает в себя

- живое вещество, образованное совокупностью организмов;
- биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.);
- косное вещество, которое формируется без участия живых организмов (магматические горные породы);
- биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы);
- радиоактивное вещество,
- вещество космического происхождения (метеориты и др.)
- рассеянные атомы.

Все эти семь типов веществ геологически связаны между собой.

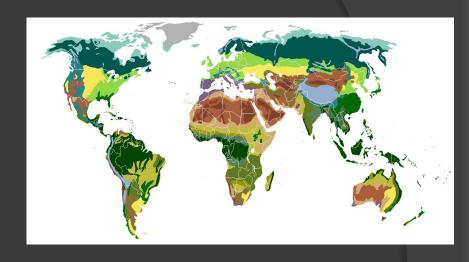
Биомасса, её распределение на планете

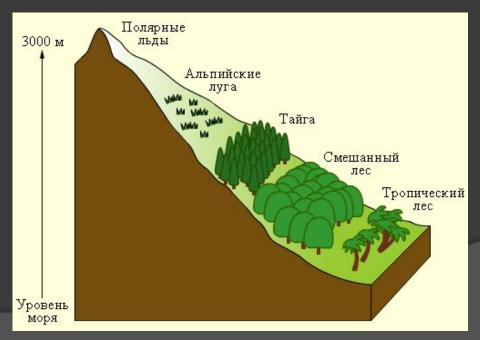
Одним из главных общебиологических показателей является масса биосферы, или биомасса.

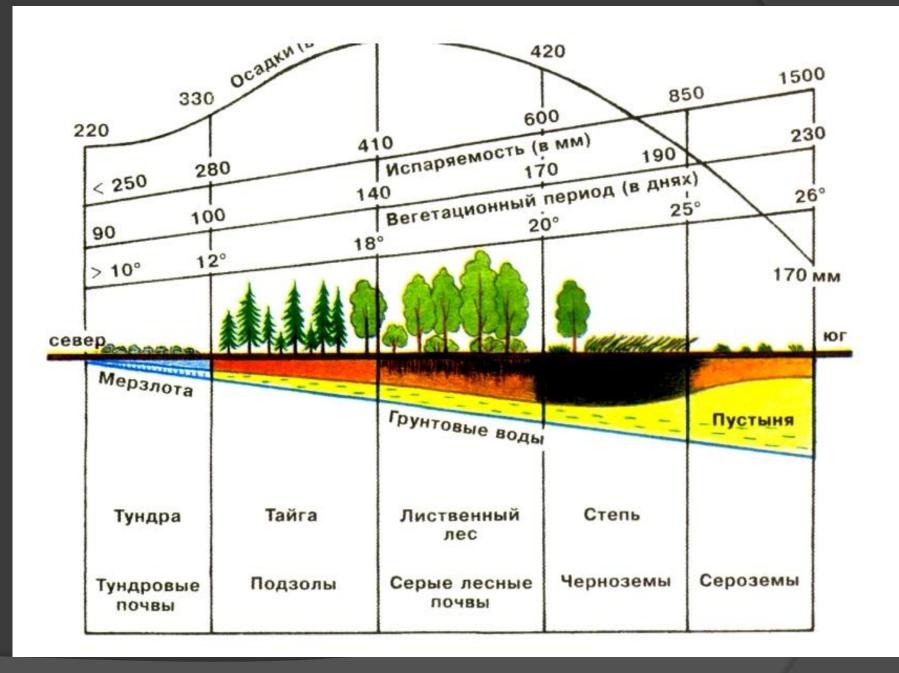
Биомасса — это общая масса всех видов живого на Земле в определенный момент времени.

На нашей планете биомасса состоит из трех главных видов:

растения (99,75% массы биосферы),


животные (0,25%)


микроорганизмы (10 - 6%).

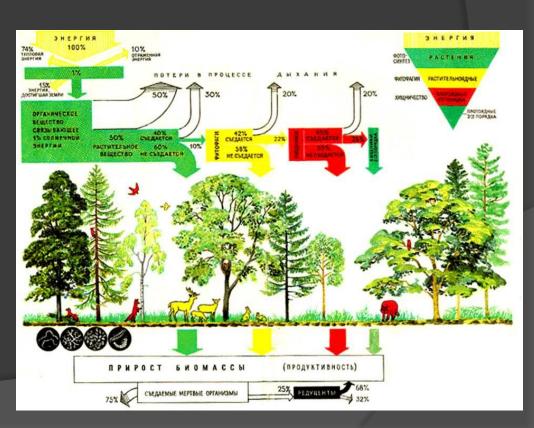

Биомасса на Земле изменяется в процессе эволюции. Она сначала медленно возрастала на протяжении 3340 миллионов лет, а потом стала сравнительно быстро уменьшаться на протяжении 263 миллионов лет [3].

Биомасса биосферы

Биомасса различных участков поверхности Земли зависит от климатических условий — температуры, количества выпадаемых осадков.

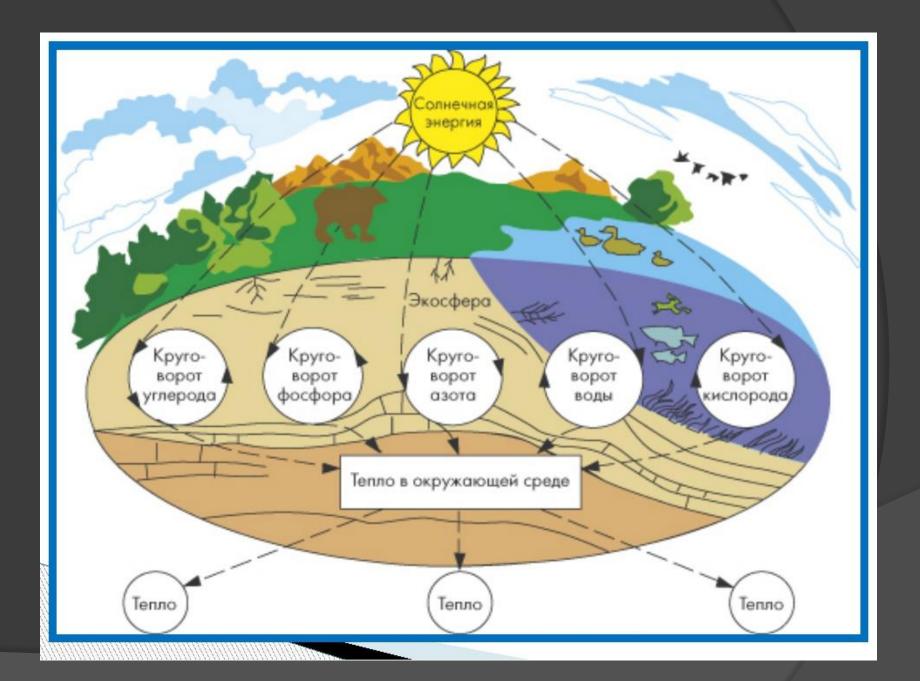
Три основных положения, которые В. И. Вернадский назвал биогеохимическими принципами:

- 1. Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению.
- 2. Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов.
- 3. Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

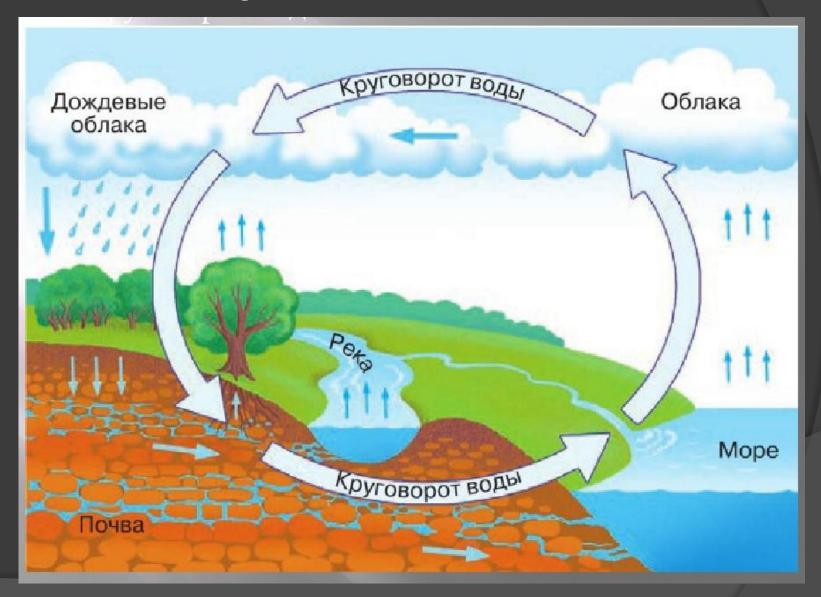


Биосфера и превращение энергии

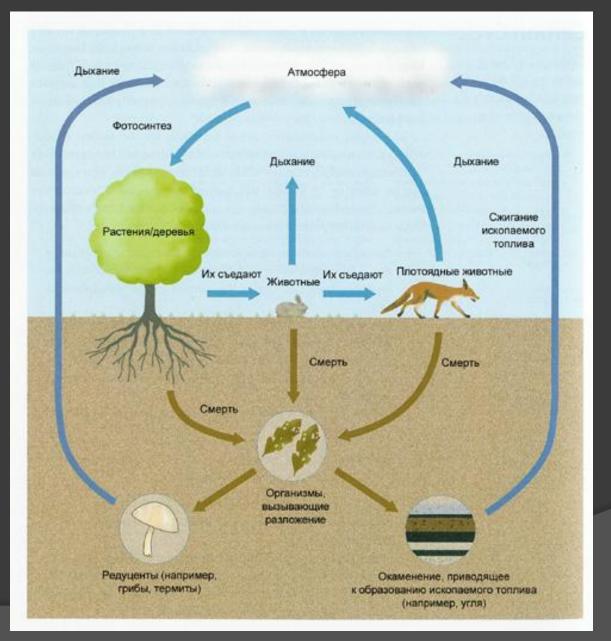
Живое вещество Земли не только зависит от условий жизни, но и само охватывает и перестраивает все химические процессы биосферы, в которой одновременно происходят поступление и потеря энергии.

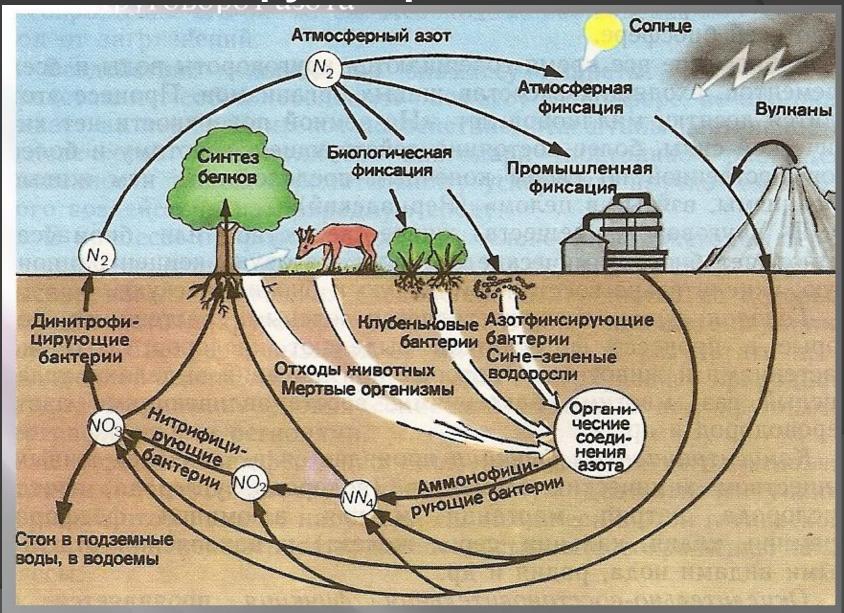

Энергетический баланс Земли слагается из различных источников. Главнейшие из них — солнечная и радиоактивная энергия.

Тепло лучей Солнца, падающее на Землю, теперь значительно превосходит внутреннюю теплоту от радиоактивного распада. Главнейшую роль в жизни на Земле играет непрерывно поступающий поток энергии Солнца. Падающая на Землю солнечная энергия аккумулируется зелеными растениями и поступает с ними в другие организмы.



Круговорот веществ в биосфере




Круговорот воды

Круговорот углерода

Круговорот азота

Использованные источники

- 1. Географическая оболочка, её свойства и целостность http://geografya.ru/geograficheskaya_o bolochka.html
- 2. https://natworld.info/raznoe-o-prirode/biosfera © Природа Мира|NatWorld.info
- http://www.geoglobus.ru/info/review26/29-biological-evolution.php

