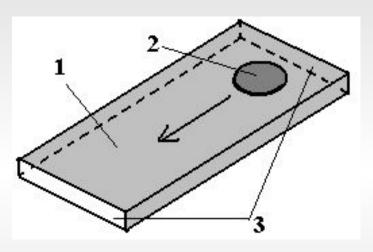
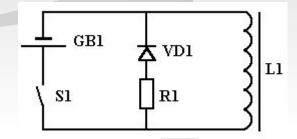
Специализированный учебно-научный центр Уральского Государственного Университета им. А.М.Горького


Докладчик: Самунь Виктор

Формулировка задачи

Монета удерживается над горизонтальной поверхностью. Найдите начальные условия, позволяющие добиться равной вероятности появления орла и решки после падения монеты.


Способы, позволяющие добиться одинаковых начальных условий (угол наклона монеты, высота)

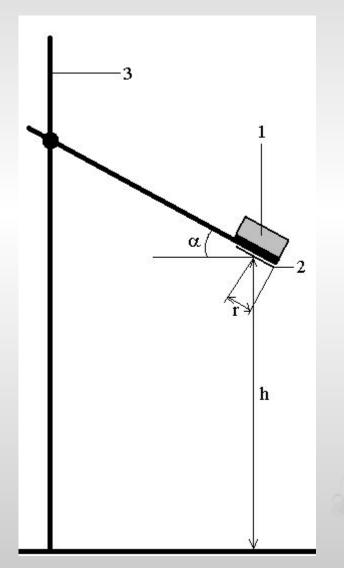
Способ № 1

- 1 лётка;
- 2 монета;
- 3 прорези

Способ № 2 (электромагнит)

GB1 – гальванический элемент;

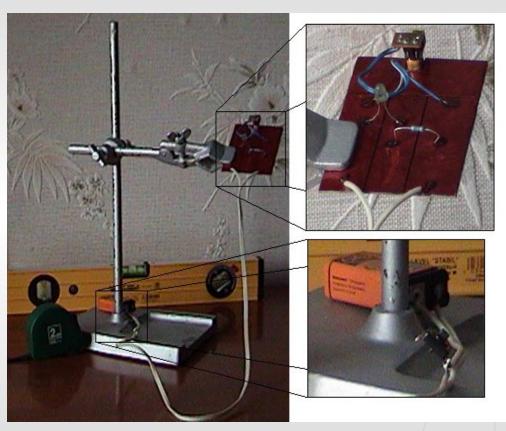
S1 – выключатель;

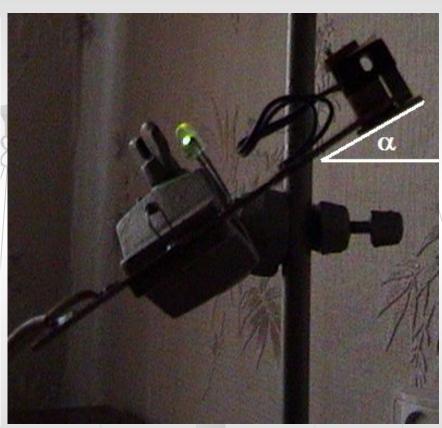

VD1 – светодиод;

R1 – резистор;

L1 – катушка с сердечником

Высоту монеты над поверхностью можно поддерживать одинаковой, используя штатив;


Схема экспериментальной установки:



- 1 электромагнит;
- 2 монета;
- 3 штатив с лапкой;

- h высота падения;
- r радиус монеты;
- а угол наклона;

Вид рабочей установки

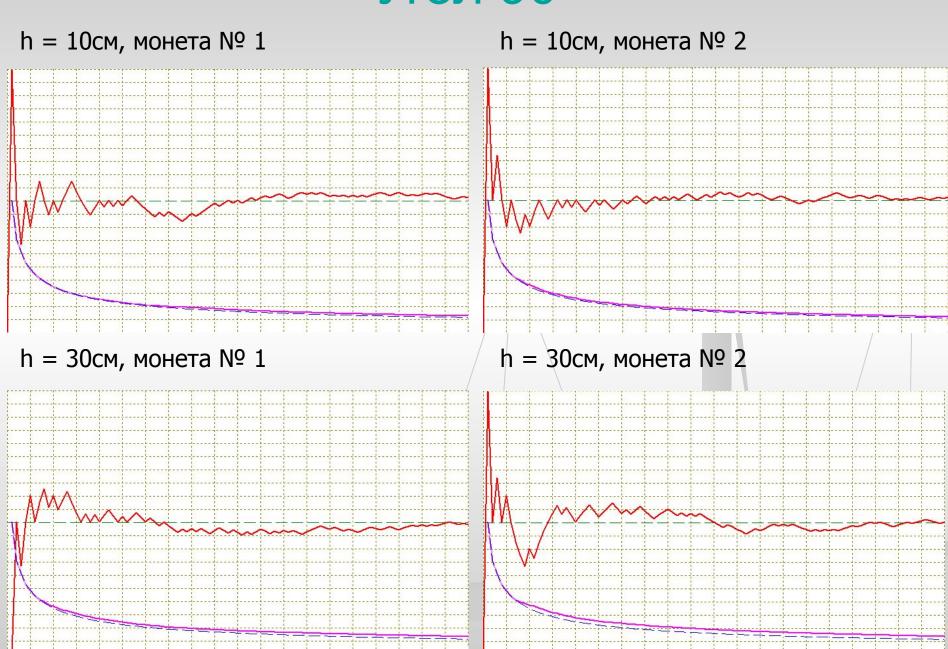
Монета

Общий вид

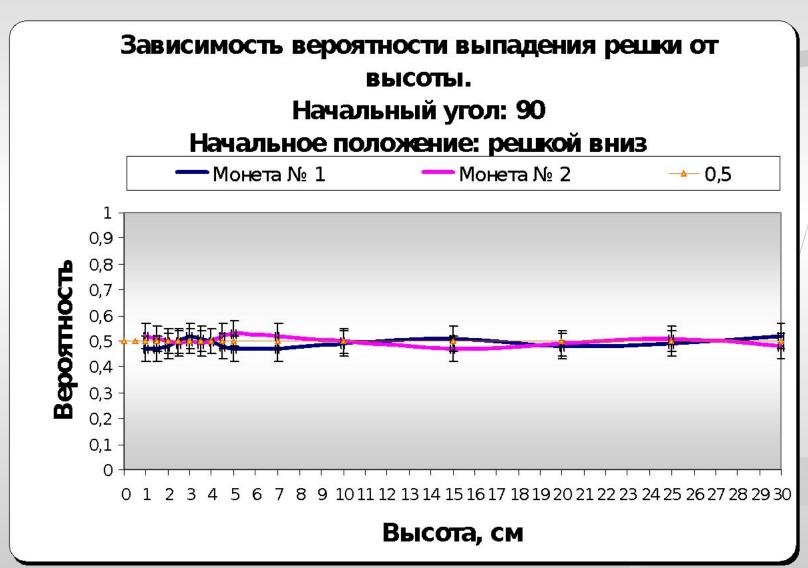
Параметры монет, используемых в экспериментах

	Масса, г.	Диаметр, мм.	Толщина, мм.	Плотность, г/см ³			
Монета № 1	1,489 ± 0,001	15,5 ± 0,1	$1,0 \pm 0,1$	7,89 ± 0,01			
Монета № 2	1,495 ± 0,001	15,9 ± 0,1	1,1 ± 0,1	6,84 ± 0,01			

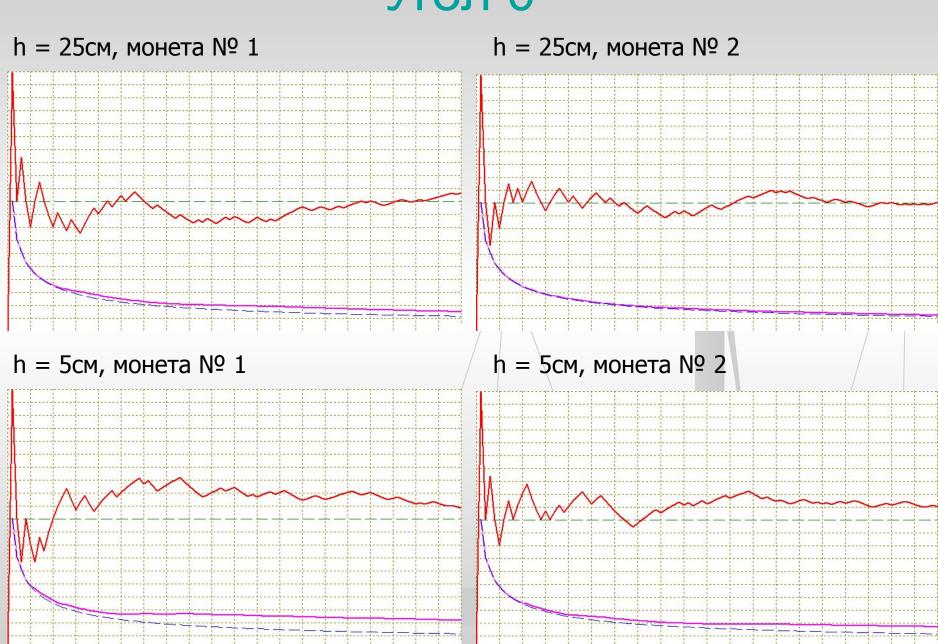
Качественный анализ проблемы


_{1.} Угол 0°:

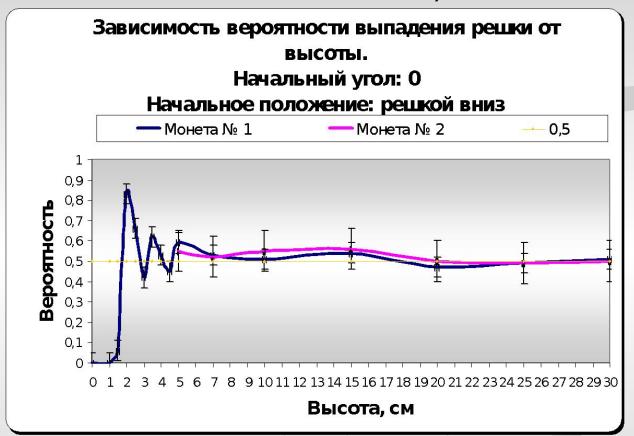
Вероятность выпадения решки зависит от числа переворотов монеты в воздухе. С ростом высоты вероятность выпадения решки приближается от 0 (1) к 0,5;


2. Угол 90°:

Исходы равновероятны с самого начала, поэтому мы при любой высоте получим вероятность выпадения решки, близкую к 0,5.


Угол 90°

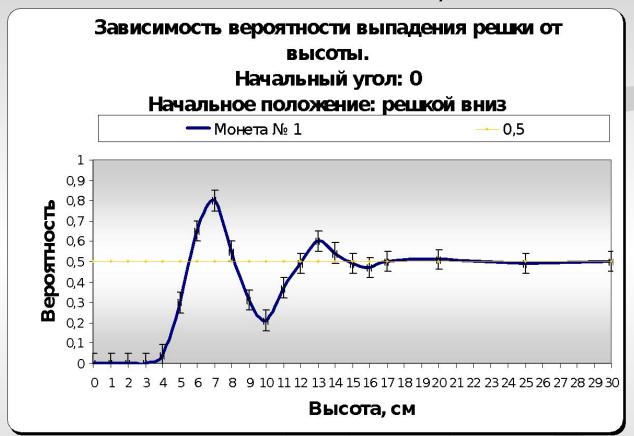
Зависимость вероятности от высоты. Угол 90°



Угол 0°

Зависимость вероятности от высоты. Угол 0°

Подложено 0 листов бумаги

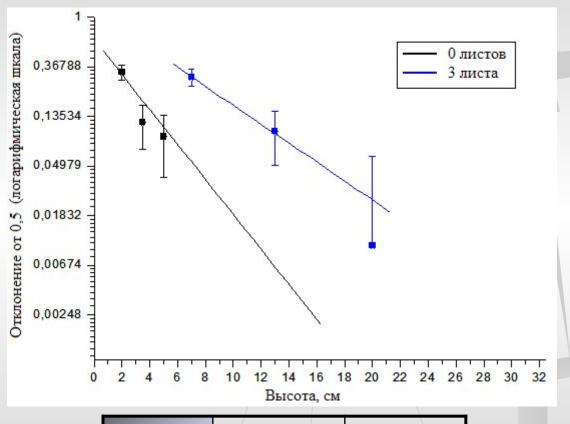

Коэффициент восстановления: 0,52±0,03

Число переворотов монеты

h	1,5	2	2,5	3	3,5	4	4,5	5	7	10	15	20	25	30
n	0-1	0-1	0-2	0-2	1-2	1-2	2-3	2-4	3-5	3-6	4-6	4-7	5-8	5-10

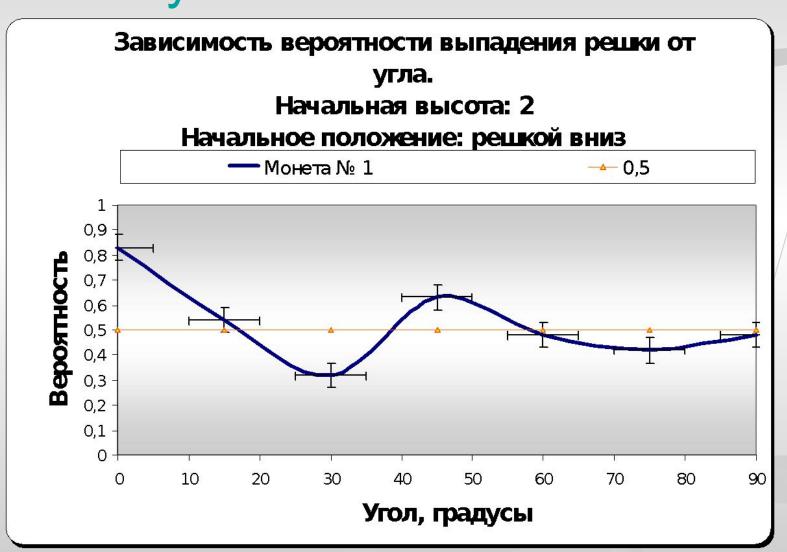
Зависимость вероятности от высоты. Угол 0°

Подложено 3 листа бумаги


Коэффициент восстановления: 0,37±0,03

Число переворотов монеты

h	4	5	6	7	8	9	10	11	12	13	14	15	16	17
n	0-1	0-1	1-2	1-2	1-2	1-2	2	2-3	2-3	2-3	2-3	3-4	3-4	3-4


Анализ осцилляций графиков

Отклонение «пиков» от 0,5 в логарифмическом масштабе:



	γ , cm ⁻¹	H _{min} , см
0 листов	0,41 ± 0,03	6 ± 2
3 листа	0,12 ± 0,03	22 ± 3

Зависимость вероятности от угла. Высота 2 см

Зависимость вероятности от угла. Высота 30 см

Таблица результатов экспериментов

Вероятность выпадения решки. Монета № 1

h a	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	7	10	15	20	25	30
0°	0	0	0	6	83	66	42	62	53	45	59	53	51	54	47	49	51
30°	0	0									53	60					48
45°	0	0									59	57					46
60°	0	0									55	52					52
90°	0	0	47	47	48	50	52	51	50	48	47	47	49	51	48	49	52
h a	4	5	6	7	8	9	10	11	12	13	14	15	16	17	20	25	30
0°	4	30	65	80	55	31	21	37	49	60	54	49	47	50	51	49	50

a h	0°	15°	30°	45°	60°	75°	90°
2	83	54	32	63	48	42	48

Таблица результатов экспериментов

Вероятность выпадения решки. Монета № 2

h a	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	7	10	15	20	25	30
0°	0	0	0								55	52	55	56	50	49	50
30°	0	0									55	45					51
45°	0	0									44	43					52
60°	0	0									49	46					48
90°	0	0	52	51	50	49	50	49	50	52	53	52	50	47	49	51	48

Из 9205 проведенных экспериментов 5 раз монета становилась на ребро. Значит, вероятность третьего исхода (падение монеты на ребро) у реальных монет очень мала.

Вид монеты на ребре:

Вывод

- Предложены способы сохранения начальных условий падения монеты (угол, высота, начальная скорость) и сконструирована установка;
- Проведен качественный анализ проблемы и выбран самый интересный для исследования случай (0⁰);
- Были проведены эксперименты по построению зависимости вероятности выпадения решки от различных начальных условий и исследован результат;
- Определили условия (для монет, используемых в эксперименте и для поверхности, используемой в эксперименте), позволяющие добиться равной вероятности исходов.

Преимущества и недостатки каждого способа сохранения угла

Способ № 1

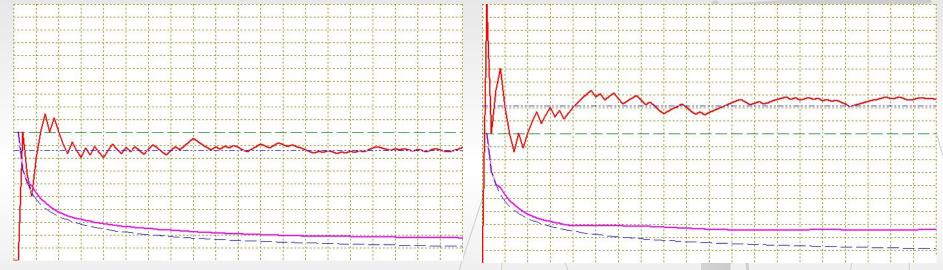
- + Простота изготовления;
- + Возможность регулировки угла наклона;
- + Возможность проведения эксперимента с любыми монетами;
- Наличие силы трения;
- Разные конечные скорости монеты;
- Невозможность создания некоторых начальных условий;
- Невозможность соблюдения постоянства некоторых начальных условий

Способ № 2 (электромагнит)

- + Начальная скорость монеты не зависит от угла $(0 \, {}^{\text{м}}\!/_{\text{с}})$;
- + Нет трения;
- + Возможность регулировки угла наклона;
- + Возможность контроля работоспособности установки (с помощью светодиода);
- + Возможность проведения эксперимента с одинаковыми условиями;
- Сложность изготовления;
- Необходим элемент питания;
- Невозможность проведения эксперимента с некоторыми монетами

Расчет коэффициента затухания

Из приведенных графиков видно, что они «колеблются» около прямой ω =0,5. Значит, можно сказать, что вероятность «совершает затухающие гармонические колебания» около этой прямой. Проведя такую аналогию, вычислим коэффициент затухания:


$$\widetilde{\omega}_p(h) = rac{1}{2} \Psi(h) f(h) + rac{1}{2}, \quad f(h) = e^{-\gamma h}$$
 $\{h_0, \omega_0\} \in \widetilde{\omega}_p(h) \Rightarrow \gamma = rac{-\ln(2\omega_0 - 1)}{h_0}$
 $\widetilde{\omega}_p(h + \Delta) = \omega_p(h) \Leftrightarrow \widetilde{\omega}_p(h) = \omega_p(h - \Delta)$
Итоговая функция:
 $\omega_p(h) = rac{1}{2} \Psi(h - \Delta) e^{-\gamma(h - \Delta)}, \quad \gamma = -rac{\ln(2\omega_0 - 1)}{h_0 - \Delta}$

Условия равной вероятности:

$$\frac{1}{2}e^{-\gamma(h-\Delta)} + \frac{1}{2} \le \varepsilon + \frac{1}{2} \implies h \ge \Delta - \frac{\ln(2\varepsilon)}{\gamma}, \qquad H_{\min} = \Delta - \frac{\ln(2\varepsilon)}{\gamma} \qquad \varepsilon = 0,05$$

Анализ влияния начального положения монеты

h = 7см, $a = 30^{\circ}$, монета N° 1, орлом вниз; h = 7 см, $a = 30^{\circ}$, монета N° 1, решкой вниз

Вероятность выпадения решки: 0,43±0,05

Вероятность выпадения решки: 0,60±0,05

Значит, если мы в начальный момент монету перевернем, т.е. у нее сверху будет другая сторона, то вероятность выпадения решки станет равной:

 $1-\omega$, ω - исходная вероятность