

ВЛИЯНИЕ ИМПЛАНТАЦИИ ИОНОВ ФОСФОРА НА СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В ПОВЕРХНОСТНЫХ СЛОЯХ МОНОКРИСТАЛЛА КРЕМНИЯ

Цель работы

Исследование структурных изменений в приповерхностных слоях монокристаллов Si после имплантации ионов фосфора.

Энергия имплантованных ионов -*E*=180 кэВ, доза - *D*=8 · 1014 см-2

Для реализации цели:

- Использовано методы рентгеновской топографии и двухкристального спектрометра;
- Использовано численные методы решения системы дифференциальных уравнений, описывающие процессы рассеяния рентгеновских лучей в искаженных кристаллах

Образец кремния схематично

КОСОНЕСИММЕТРИЧНАЯ ДИФРАКЦИИ В ГЕОМЕТРИИ НА ОТРАЖЕНИЕ

Схематическое представление особенный значений азимутального угла поворота ф при повороте кристалла вокруг вектора дифракции

γ₀ < 0 → cosφ ≥ tgθ_Bctgψ дифракция Лауэ; γ₀≥0 → cosφ <tgθ_Bctgψ дифракция Брэгга;

0≥γ₀→0→cosφ_{0,h}<±tgθ_Bctgψ эффект ПВО 0 ≤ γ₀ ≤ γ_{кр} дифракція Брэгга

и эффект ПВО

Топография монокристалов Si 17

б) L_{ext}=1,05мкм

Х-лучевые топограмы монокристала Si:

СиКа-излучение, входящая плоскость (111)

1-исходная область; 2-имплантированаяс

Атомно-силовая микроскопия образца Si

18

Объёмное изображение микрорельефа поверхности образца Si

- а) исходная область
- б) имплантированая область

N⁰	Z, mkm	R _a , mkm	R _q , mkm		
1 (исходная)	1,725	0,150	0,201		
2 (имплонтированая)	4,756	0,273	0,373		

Схема трехосного рентгеновского дифрактометра

Високоразрешающий трехосный рентгеновский дифрактометр PANalytical MRD X'Pert PRO. используется для измерения кривых дифракционного отражения (КДО). На трехосном дифрактометре "Philips" находится: на первой фирмы ОСИ-ИЗ германиевый монохроматор четырехкратным отражением, на второй – исследуемый образец, на третьей кристалл - анализатор.

№ обл.	µ _{d,} см⁻¹	<i>L</i> ·10 ²	R _{д.к.} ,мкм	<i>п_{д.к.},</i> см⁻ ³	R _{с.к.} ,мкм	п _{с.к.} ,см⁻ ³	<i>R_п</i> .,мкм	<i>п_{п.}</i> ,см⁻³
1	1,05	0,6	0,45	7 · 10 ⁶	0,009	7·10 ¹¹	0,5	8 · 10 ⁷
2	0,21	0,18	0,4	2 · 10 ⁸	0,009	8 · 10 ¹²	0,9	2 · 10 ⁹

Кривые дифракционного отражения монокристалла Si: сопоставление теоретической и экспериментальных кривых

Профиль деформации в приповерхностных слоях кристалла, имплантированного ионами фосфора

Выводы:

- Воздействие ионной имплантации на поверхность образца приводят к изменению характеристик и формы кривых качания, особенно их "хвостов", относительно исходной части образца. Наблюдается также незначительное увеличение полуширины кривых качания и отношения интегральной интенсивности к высоте максимума кривой.
- Из полученного распределения имплантированных ионов следует, что максимальное значение концентрации имплантанта n=5.75·1019 см-3 наблюдается на глубине порядка ~2500Å.
- Исходя из численных решений уравнений Такаги Топена, а также из расчетов на основании обобщенной динамической теории дифракции рентгеновских лучей построен профили деформации в поверхностных слоях кремния
- Оценены средний радиус и концентрация микродефектов: дискообразные кластеры размер ~0,5 мкм, концентрация ~ 10⁷÷10⁸ см⁻³; сферические кластеры размер ~0,011 мкм, концентрация ~10¹²÷10¹³ см⁻³; дислокационные петли размер ~0,7 мкм, концентрация ~10⁸÷10⁹ см⁻³
- Определенная с помощью атомно-силовой микроскопии высота *Ra* характерного рельефа неровностей на имплантированной ионами поверхности, равна ~0,273 нм