2 факультет

Эксплуатация теплоэнергетического оборудования БАЭС

(ТЕПЛОВОЙ РАСЧЕТ РЕГЕНЕРАТИВНЫХ И СЕТЕВЫХ ПОДОГРЕВАТЕЛЕЙ)

Виды расчётов

- **Тепловые расчеты** подогревателей могут выполняться:
- поверочные:
- конструкторские.
- Конструкторский расчёт определение поверхности нагрева, конструктивные размеры подогревателя.
- Поверочный расчёт определение температуры одного из теплоносителей или величины подогрева.

Исходные данные

Исходные данные принимаются из:

- расчёта тепловой схемы;
- данных испытаний.

К ним относятся:

- расход и параметры греющего пара;
- расход нагреваемой воды;
- *давление* нагреваемой воды на входе в подогреватель;
- *температура* нагреваемой воды на входе в подогреватель.

Уравнение теплового баланса

В основе теплового расчета лежат уравнение теплового баланса и уравнение теплопередачи.

Для условий, когда одним из теплоносителей является пар, а другим — вода, уравнение теплового баланса имеет вид

$$Q = G(h_{_{\rm B}}^{I} - h_{_{\rm B}}^{II}) = D_{_{\rm II}}(h_{_{\rm II}} - h_{_{\rm JID}})\eta \tag{1}$$

Здесь:

Q — поток теплоты, передаваемой нагреваемой среде в подогревателе, кВт;

 G, D_{Π} – расходы пара и воды, кг/с;

 $h_{\rm B}^{I}$, $h_{\rm B}^{II}$ – удельные энтальпии нагреваемой воды на выходе и на входе в подогреватель, кДж/кг;

 $h_{\rm n}, h_{\rm дp}$ — удельные энтальпии греющего пара на входе в подогреватель и конденсата греющего пара (дренажа) на выходе из подогревателя соответственно, кДж/кг; η - коэффициент, учитывающий потери теплоты в окружающую среду (равен 0.98-0.99).

Поверхность нагрева

Поверхность нагрева определяется из уравнения теплопередачи

$$Q = kF \Delta t_{\rm cp} \tag{2}$$

Здесь:

k – коэффициент теплопередачи, кВт/м 2 К;

 $\Delta t_{\rm cp}$ – средний температурный напор для поверхности нагрева, К.

Особенности сетевых подогревателей

Расчеты регенеративных и сетевых подогревателей идентичны.

У сетевых подогревателей отсутствуют охладители пара и дренажа,

в связи с чем их расчёт упрощается.

Уравнение для регенеративного подогревателя

Для регенеративного подогревателя, в котором предусмотрены охладитель пара и охладитель конденсата (дренажа) греющего пара, поток теплоты равен

$$Q = Q_{\Pi,0} + Q_{C,\Pi} + Q_{O,\Pi} \tag{3}$$

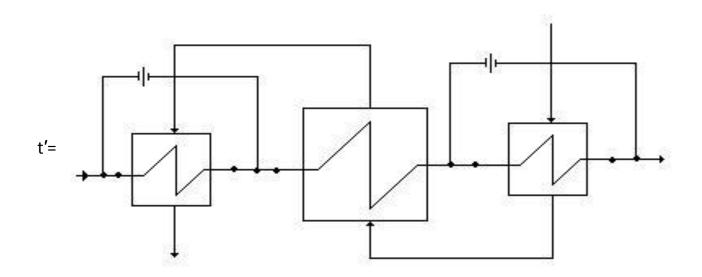
Здесь:

• количество теплоты, передаваемой в охладителе пара

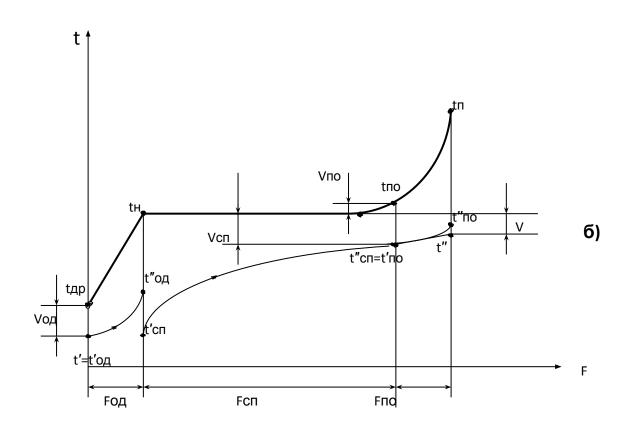
$$Q_{\text{II.O}} = G_{\text{II.O}}(h^{II}_{\text{II.O}} - h^{I}_{\text{II.O}}) = D_{\text{II}}(h_{\text{II}} - h_{\text{II.O}}) \eta_{\text{II}} = k_{\text{II.O}} F_{\text{II.O}} \Delta t_{\text{cp}}$$
(4)

• количество теплоты, передаваемой в собственно подогревателе

$$Q_{c.\Pi} = G_{c.\Pi} (h_{c.\Pi}^{II} - h_{c.\Pi}^{I}) = D_{\Pi} (h_{\Pi.O} - h_{H}^{B}) \eta_{\Pi} = k_{c.\Pi} F_{c.\Pi} \Delta t_{cp}$$
 (5)


• количество теплоты, передаваемой в охладителе дренажа

$$Q_{\text{o.d}} = G_{\text{o.d}} (h^{II}_{\text{o.d}} - h^{I}_{\text{o.d}}) = D_{\text{m}} (h^{\text{B}}_{\text{H}} - h^{\text{B}}_{\text{dp}}) \eta_{\text{m}} = k_{\text{o.d}} F_{\text{o.d}} \Delta t_{\text{cp}}$$
(6)


Примечание к предыдущим уравнениям

- В уравнениях (4) (6)
- h слева удельные энтальпии нагреваемой среды (воды) на входе и выходе в подогреватели;
- *h* справа удельные энтальпии пара на входе и выходе из каждого отсека
- (h пар на входе в подогрев;
- $h_{n.o}$ пар на выходе из пароохладителя;
- $h_{\ \ dp}^{\it B}$ пар в состоянии насыщения, $h_{\ \ dp}^{\it B}$ конденсат пара).

При проведении тепловых расчетов количество теплоты, передаваемой в отдельных элементах подогревателей, оценивается по температуре греющей и нагреваемой сред.

Схема движения сред (а) и температурный график теплоносителей (б)

Температура воды на выходе из охладителя пара

Температура воды на выходе из охладителя пара $t_{\text{п.о}}$ может приниматься по температуре насыщения $t_{..}$:

$$t_{\text{II.O}} = t_{\text{H}} + (10 - 25) \, ^{\circ}\text{C},$$

а температура среды на выходе из охладителя конденсата

$$t_{\text{др}} = t'_{\text{B}} + (5 - 10) \, ^{\circ}\text{C}.$$

Температуру греющей среды

Для собственно подогревателя температуру греющей среды можно принять

постоянной и равной температуре насыщения при давлении греющего пара.

Уменьшения габаритов охладителя конденсата и охладителя пара

Для уменьшения габаритов охладителя конденсата и охладителя пара через них пропускается только часть поступающей в подогреватель воды (10 – 20 %).

Температура воды на входе и выходе

После смешения потоков воды за охладителем конденсата

температура воды на входе в собственно подогреватель $t''_{\text{с.п}}$ становится ниже $t''_{\text{о.д}}$.

Аналогично при принятой схеме включения охладителя пара

температура воды на выходе из подогревателя $t^{\prime\prime}_{\text{с.п}}$ будет ниже $t^{\prime\prime}_{\text{о.п}}$.

Температура воды и температурный напор

Недогрев воды до температуры насыщения в собственно подогревателе и

минимальные температурные напоры в охладителях пара и конденсата выбираются на основании технико-экономических расчетов.

Примечание для температурных напоров

Уменьшение температурных напоров приводит к повышению тепловой экономичности блока

(за счет более полного использования теплоты отборного пара),

но сопровождается **ростом металлозатрат и капиталовложений в подогреватели**.

Рекомендуются следующие температурные

UQDODLI:		
Напоры: Минимальный температурный напор	ПВД	ПНД
$\Delta t_{_{ m O.\Pi}}$	10 - 15	7 – 12
$\Delta t_{ m c.m}$	3 - 5	2-4
$\Delta t_{_{ m O.K}}$	6 - 10	3 - 6

Средний температурный напор

Средний температурный напор для поверхностей нагрева отдельных элементов и подогревателя в целом определяется как среднелогорифмический;

T. e.

$$\Delta t_{\rm cp} = (\Delta t_{\rm G} - \Delta t_{\rm M}) / \ln(\Delta t_{\rm G} / \Delta t_{\rm M}) \tag{7}$$

Разность температур

Здесь большие и меньшие температурные разности **определяются в соответствии** с графиком (*на рисунке 1*):

для собственно *подогревателя*

$$\Delta t_{\rm G} = t_{\rm H} - t_{\rm C.\Pi}', \Delta t_{\rm M} = t_{\rm H} - t_{\rm C.\Pi}'$$

для охладителя пара (при

противотоке)

$$\Delta t_{\rm G} = t_{\rm H} - t''_{\rm B} \,_{\rm M} \,_{\Delta} t_{\rm M} = t''_{\rm O.\Pi} - t'_{\rm C.\Pi'}$$

для **охладителя конденсата**

 $\wedge + - + + +$

Теплоотдача через стенку трубы

Для тонкостенных труб, применяемых в регенеративных подогревателях, с достаточной степенью точности можно определить коэффициент теплопередачи по формуле для плоской стенки

$$k = (1/\alpha_1 + \delta_{cT}/\lambda_{cT} + \delta_H/\lambda_H + 1/\alpha_2)^{-1}$$
 (8)

Здесь:

- α_1 и α_2 коэффициенты теплоотдачи от греющей среды к стенке труб и от стенки к нагреваемой среде соответственно, Вт/ м² К;
- δ_{ст}, λ_{ст}, δ_н, λ_н соответственно толщины стенки труб и слоя накипи, м, и коэффициенты теплопроводности металла и накипи, Вт/ м К.

Сопротивление стенки

При расчёте регенеративных подогревателей

термическим сопротивлением стенки можно пренебречь,

а накипь на стенках труб практически всегда отсутствует.

Поверхность теплообмена

Поверхность теплообмена

подогревателя *F* определяется из уравнения теплопередачи.

Для подогревателей принято определять её значения **по наружному диаметру труб F**_н:

$$F_{\rm H} = (Q/k\Delta t_{\rm cp}) * (d_{\rm H}/d_{\rm p}) \tag{9}$$

Где значение:

$$d_{\rm p} = d_{\rm BH}$$
 при $\alpha_1 >> \alpha_2$; $d_{\rm p} = 0.5$ ($d_{\rm BH} = d_{\rm H}$) при $\alpha_1 \approx \alpha_2$ и $d_{\rm p} = d_{\rm H}$ при $\alpha_1 << \alpha_2$.

Определение к (коэффициент теплоотдачи)

- При определении коэффициентов теплоотдачи важным является значение условий теплообмена и состояния теплопередающих сред.

Например,

- в охладителе пара и конденсата теплообмен протекает **без изменения агрегатного состояния вещества**.
- В собственно подогревателе агрегатное состояние пара изменяется.
- Для всех элементов регенеративных подогревателей характерно вынужденное движение нагреваемой среды, при этом **режим движения, как правило, турбулентный**.

Продольное омывание

Теплообмен с однофазной средой при течении внутри труб и в каналах произвольной формы поперечного сечения (продольное омывание)

при $I/d_3 > 40$ и турбулентном режиме (Re $> 10^4$) характеризуется уравнением

Здесь:

Nu = $\alpha d_{3}/\lambda$ - число Нуссельта,

в состав которого входит искомый коэффициент теплоотдачи;

 $d_{_{9}}$ – определяющий размер: при течении среды в трубах используется внутренний диаметр $d_{_{\rm BH}}$, а при продольном обтекании труб и каналов – эквивалентный диаметр $d_{_{9}}$ = 4f /P,

Где:

P – смоченный периметр;

f – площадь поперечного сечения канала, M^2 .

Число Рейнольдса $Re = wd_3/v$

определяет режим движения среды, где w – скорость, м/с, и v – коэффициент кинематической вязкости, м²/с.

Число Прандтля Pr = v/a характеризует физические свойства среды,

где a – коэффициент её температуропроводности, M^2/c .

Индексы «ж» и «ст» при числе Pr указывают на значения температуры, при которой определяется это число.

При нагревании воды или пара температура стенки труб близка к температуре среды и значение $\Pr_{c_{\tau}}$ оказывается близким значению \Pr_{w} .

Отношение Pr_{**}/Pr_{ct} в этом случае принимают равным 1.

Изменение среднего коэффициента теплоотдачи по длине трубы

При развитом турбулентном движении жидкости (Re < 10⁴) в трубах и прямолинейных каналах некруглого сечения с достаточной степенью точности можно использовать вместо (10) уравнение вида

Nu = 0,023 Re^{0,8} Pr_x^{0,4}
$$\epsilon_{l}$$
 (11)

Коэффициент ε, учитывает изменение среднего коэффициента теплоотдачи по длине трубы.

Если $l/d_{9} \ge 50$, то $ε_{l} = 1$, при $l/d_{9} < 50$ значения $ε_{l}$ даны в таблице (1).

Значения коэффициента ϵ_{l} в формуле (11)

Re	$l/d_{_{\mathfrak{S}}}$								
	1	2	5	10	15	20	30	40	
1*10 ⁴	1,65	1,50	1,34	1,23	1,17	1,13	1,07	1,03	
2*10 ⁴	1,51	1,40	1,27	1,18	1,13	1,10	1,05	1,02	
5*10 ⁴	1,34	1,27	1,18	1,13	1,10	1,08	1,04	1,02	
1*10 ⁵	1,28	1,22	1,15	1,10	1,08	1,06	1,03	1,02	
1*10 ⁶	1,14	1,11	1,08	1,05	1,04	1,03	1,02	1,01	

Уравнение (11) с поправкой

Для определения коэффициента теплоотдачи при движении жидкости в спиральных трубах, применяющихся в ПВД, в уравнение вводится поправка на турбулизацию потока за счет его поворота.

- $D_{_{\mathrm{BH}}}$ внутренний диаметр наименьшего витка спирали, м;
- $n_{_{\rm B}}$ число витков в одной плоскости спирали;
- n_{Π}^{2} число полостей у спиральной трубы (одинарная или двойная спираль);
- $I_{\rm cn}$ длина спирали, м.

Средняя расчётная температура теплоносителя

Входящие в числа подобия теплофизические параметры сред определяются

при средней расчетной температуре теплоносителя

$$t_{\rm cp} = t_{\rm BHX} + (t_{\rm BHX} - t_{\rm BX})(\Delta t_{\rm cp} - \Delta t_{\rm M})/(\Delta t_{\rm G} - \Delta t_{\rm M})$$
 (13)

Коэффициент теплоотдачи

В условиях движения жидкости, когда значения числа Re оказываются меньшим 2200 (ламинарное течение) коэффициент теплоотдачи определяется из уравнения

Nu = 0,17 Re^{0,33} Gr^{0,1} Pr_x^{0,43} (Pr_x/ Pr_{ct})^{0,25}
$$\varepsilon$$
₁ (14)

Здесь:

 $Gr = \beta g d^3 \Delta t / v^2 -$ число Грасгофа;

 Δt – разность между температурами стенки и теплоносителя, °C;

 $\beta = 1/t$ – коэффициент объемного расширения, 1/°С.

При значении числа Re = 2200 – 10⁴ (переходный режим движения жидкости) коэффициент теплоотдачи определяется из выражений (11) или (12) с учётом поправки ф, значение которой определяется из *табл. 2.*

Значения поправочного коэффициента ф к уравнениям (11) и (12)

Re	2200	2300	2500	3000	3500	5000	6000	7000	10000
ф	0,22	0,35	0,45	0,59	0,7	0,86	0,91	0,96	0,99

Уравнение для определения коэффициента теплоотдачи

В охладителях пара и конденсата передача теплоты к поверхности нагрева происходит без изменения агрегатного состояния пара при внешнем поперечном омывании пучков прямых или спиральных труб.

При турбулентном течении пара (Re> 6*10³) уравнение для определения коэффициента теплоотдачи имеет вид:

Nu =
$$C \cdot \varepsilon_z \cdot Re^m \cdot Pr^n \cdot \left(\frac{S_1 - d_H}{S_2 - d_H}\right)^p$$
 (5.15)

Здесь:

 S_1 , S_2 , d_H – шаги труб в поперечном и продольном направлениях потока и наружный диаметр труб соответственно, м; ϵ_z – коэффициент, учитывающий влияние количества рядов труб z вдоль потока (для подогревателей ТЭС z > 20; $\epsilon_z = 1$). Значения коэффициента С и показателей степени m, n и p принимаются из табл. 3.

Значения коэффициента С и показателей степени т, п и р принимаются из табл. 3.

Характеристика пучка труб	C	m	n	р
Коридорный из гладких прямых труб	0,2	0,64	0,35	0
Шахматный или спиральный	0,305	0,6	0,35	0,25
Спиральный при Re >10 ⁵	0,027	0,84	0,4	0

Поправка для гладкотрубного пучка труб

Для гладкотрубного пучка труб, наклоненного к потолку под углом ϕ , выражение (15) дополняется поправкой $\epsilon_{_{\text{W}}}$ =0,25sin(2 ϕ - 70) + 0,75.

При смешанном (продольном и поперечном) омывании пучков труб коэффициент теплоотдачи определяется раздельно для каждой части пучка и усредняется:

$$\alpha = \frac{\alpha_{\text{поп}} \cdot F_{\text{поп}} + \alpha_{\text{прод}} \cdot F_{\text{прод}}}{F_{\text{поп}} + F_{\text{прод}}}$$
(5.16)

Выбор скорости движения среды

- Для расчета теплообмена в элементах подогревателей, где изменение агрегатного состояния теплоносителей не происходит, необходимо выбрать скорость движения среды (после определения конструктивных размеров подогревателя скорость уточняется).
- Скорость движения теплоносителей выбирается на основании технико-экономических расчетов.
- Увеличение скорости улучшает условия теплообмена, что приводит к снижению требуемой поверхности нагрева, т.е. снижению стоимости регенеративных подогревателей.
- В то же время с увеличением скорости возрастает гидравлическое сопротивление движению жидкости, что приводит к возрастанию мощности, затрачиваемой на перекачивание.
- Оптимальные значения скорости в значительной степени зависят от стоимости топлива и давления в трубной системе.
- Для ПНД значения скорости принимаются 1,7-2,2 м/с при дешевом топливе и 1,5-1,8 м/с при дорогом; для ПВД соответственно 1,6-1,9 и 1,5-1,7 м/с.

Примечание

В регенеративных подогревателях можно считать, что теплообмен происходит почти в неподвижном паре.

Главными условиями теплообмена в этом случае являются скорость стекания и толщина пленки конденсата, образующегося на трубах.

Режим течения пленки конденсата

Режим течения пленки конденсата

определяется числом Рейнольдса

$$Re_{\kappa} = 10^{-3} q l/g \mu_{\kappa} r \qquad (17)$$

Здесь

- q=Q/F средняя плотность теплового потока через поверхность нагрева, Вт/м²;
- I высота участка труб между соседними перегородками, м;
- μ_{κ} коэффициент динамической вязкости пленки конденсата, h^*c/m^2 ;
- r удельная теплота конденсации пара, кДж/кг.

Медленно движущегося пара

При пленочной конденсации чистого медленно движущегося пара при Re_к <100 определение коэффициента теплоотдачи можно производить из выражения

$$d_1 = C \cdot A \cdot \left(\frac{r}{1 \cdot \Delta t_1}\right)^{0.25} \qquad \epsilon_r = b \cdot \left(\frac{1}{\Delta t_1}\right)^{0.25} \tag{5.18}$$

где
$$A = \left[\frac{\left(\lambda_k \right)^3 \cdot \rho_k \cdot \left(\rho_k - \rho_H \right) \cdot g}{\mu_k} \right]^{0.25}$$
; І_к и Г_к - коэффициент теплопроводнос

и плотность конденсата;

 $ho_{_{
m H}}$ – плотность пара; коэффициент С для вертикальных труб равен 1,13; $\epsilon_{_{
m r}}$ – поправка на шероховатость и загрязнение внешней поверхности труб (для латунных и нержавеющих труб $\epsilon_{_{
m r}}$ =1, для стальных цельнотянутых труб $\epsilon_{_{
m r}}$ =0,8);

 $\Delta t_1 = t_{_{\rm H}} - t_{_{\rm CR}}^{\ \ \ cp} -$ средний перепад температур в пограничном слое со стороны греющего пара; b – комплекс физических величин.

Значение коэффициента теплоотдачи

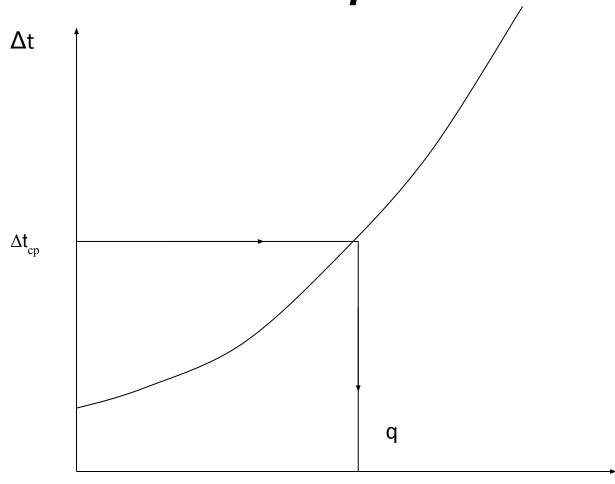
При Re_к >100 значение коэффициента теплоотдачи определяется из

выражения:

выражения:
$$\frac{1}{\alpha_1} = \lambda_K \cdot \left[\frac{g}{(v_K)^2} \right]^{\frac{1}{3}} \cdot \frac{0.16 \cdot Pr^3 \cdot Re_K}{Re_K - 100 + 0.63 \cdot Pr_K} \cdot \varepsilon$$
 (5.19)

3десь
$$\varepsilon = \frac{1 + 0.013 \cdot \left[\rho_{\Pi} \cdot (\omega_{\Pi})^2 \right]^{\frac{1}{2}}}{\left(\rho_{K} \right)^{\frac{1}{2}} \cdot \left(g_{V} \right)^{\frac{1}{3}}}$$
 учитывает влияние массовой скорості

пара на условия теплообмена.


Для многорядных коридорных и шахматных пучков горизонтальных труб (с числом рядов n) средний коэффициент теплоотдачи

$$\alpha = \alpha_1 n^{-0.25}$$
 (5.20)

Температура стенки поверхности нагрева

- При определении α_1 важным является знание температуры стенки поверхности нагрева.
- Определение ее проводится методами последовательных приближений или графоаналитическим.
- Сущность последнего сводится к графическому решению уравнения для плотности потока через стенку трубы.

Графоаналитическое определение плотности теплового потока в зависимости от температурного напора

Плотность теплового потока

Выражение для плотности теплового потока можно записать в виде:

$$q = b\Delta t^{0.75} \tag{21}$$

Определение температурного напора

Из (5.21) следует, что
$$\Delta t_1 = \left(\frac{q}{b}\right)^{\frac{4}{3}}$$
 и, учитывая. что значение $\Delta t_{cT} = \frac{\delta_{cT}}{\lambda_{cT}} \cdot q$, а $\Delta t_2 = \frac{q}{\alpha_2}$ получае

$$\Delta t = \Delta t_1 + \Delta t_{CT} + \Delta t_2 = b \cdot q^{\frac{4}{3}} + \frac{\delta_{CT}}{\lambda_{CT}} \cdot q + \frac{q}{\alpha_2}$$
 (5.22)

Решение из графика

Вид графического решения уравнения (5.22). показан на рис.2.

Используя эту зависимость для найденного из выражения (18) Δt_{ср}, определяют величину q. По найденному значению q легко определить значения Δt_1 , Δt_2 и Δt_{cp} , коэффициент теплоотдачи α, а затем коэффициент теплопередачи $k=q/\Delta t$

и необходимую поверхность нагрева F.

Литература

- 1. Нормы технологического проектирования тепловых электрических станций и тепловых сетей.- М.: Теплоэлектропроект, 1981.
- 2. Паровые котлы большой мощности. Отраслевой каталог 20-90-07.- М.: ЦНИИТЭИтяжмаш, 1990.
- 3. Рыжкин В.Я. Тепловые электрические станции.- М.: Энергоатомиздат, 1987.
- 4. Малющенко В.А., Михайлов А.К. Энергетические насосы. Справочное пособие.- М.: Энергоиздат, 1981.
- 5. Смирнов А.Д., Антипов К.М. Справочная книжка энергетика.- М.: Энергоатомиздат, 1987.
- 6. Тепловые и атомные электрические станции. Справочник./ Подред. В.А. Григорьева, В. М. Зорина.- М.: Энергоатомиздат, 1989.
- 7. Рихтер Л.А., Елизаров Д.П., Лавыгин В.М. Вспомогательное оборудование тепловых электрических станций.- М.: Энергоатомиздат, 1989.
- 8. Аэродинамический расчет котельный установок. Нормативный метод. Л.: Энергия, 1977

ФИНИШ