Соединения металлических конструкций

Соединения на болтах и заклепках

M

Соединения на болтах и заклепках

- Достоинства болтовых соединений:
- их использование значительно проще, так как не требуется сварочное оборудование.
- недостатки болтовых соединений:
- а) сравнению со сварными соединениями более металлоемки;
- б) отверстия для болтов ослабляют сечения соединяемых элементов

Типы болтов

Грубой точности (класс точности Нормальной точности (класс точности B)

Повышенной точности (класс точности A)

Высокопрочны

■ Болты грубой и нормальной точности используются трех диаметров—16, 20, 24мм и двух классов прочности— 5.8 и 5.6 (первое число, умноженное на 100, определяет минимальное временное сопротивление, МПа; произведение чисел, умноженное на 10, равно пределу текучести, МПа).

Условные обозначения отверстий и болтов

Вид отверстия	Обозначение	Виды болтов	Обозначение
Круглое	-	Постоянные болты в заводских и монтажных соединениях	
Овальное	-	Временные болты в монтажных соединениях	-
		Высокопрочные болты	4

- Основной вид работы болтовых (заклепочных) соединений — работа на сдвиг
- Разрушение соединения может быть от:
- 1) перерезывания болтов по плоскости среза
- 2) смятия поверхностей отверстий сопрягаемых

элементов

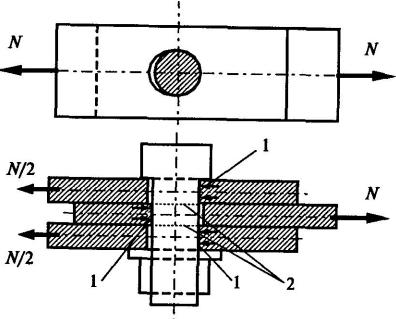


Рис. 8.10. Работа болтового соединения на сдвиг: 1 смятие листов; 2 плоскости среза болта

 Расчетное усилие, воспринимаемое одним болтом, определяют по формулам

> на срез $N_b = R_{bs}\gamma_b A n_s$; на смятие $N_b = R_{bp}\gamma_b d\Sigma t$; на растяжение $N_b = R_{br}A_{bn}$.

 R_{bs} , R_{bp} , R_{bt} — расчетные сопротивления болтовых соединений (см. табл. 58*,59* СНиП II-23-81*);

d — наружный диаметр стержня болта;

 $A = \pi d^2/4$ — расчетная площадь сечения стержня болта;

 A_{bn} — площадь сечения болта нетто (см. табл. 62* СНиП II-23-81*);

 $\sum t$ — наименьшая суммарная толщина элементов, сминаемых в одном направлении;

 n_s — число расчетных срезов одного болта;

 γ_{δ} — коэффициент условий работы соединения, который следует принимать по табл. 8.3.

Таблица 8.3 Коэффициенты условий работы болтовых соединений (табл. 35* СНиП II-23-81*)

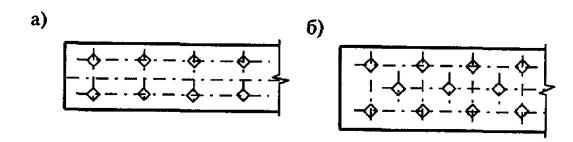
Характеристика соединения	Коэффициент условий работы соединения _{7b}	
1. Многоболтовое в расчетах на срез и смятие при болтах: класса точности А класса точности В и С, высокопрочных с нерегулируемым	1,0	
натяжением	0,9	
2. Одноболтовое и многоболтовое в расчете на смятие при а = 1,5d и b = 2d в элементах конструкций из стали с пределом текучести, МПа:		
до 285 св. 285 до 380	0,8 0,75	

Обозначения, принятые в таблице:

- a расстояние вдоль усилия от края элемента до центра ближайшего отверстия; b то же между центрами отверстий;
- d диаметр отверстия для болта. *Примечание*: Коэффициенты, установленные в поз. 1 и 2, следует учитывать одновременно.

Количество n болтов в соединении при действии продольной силы N следует определять по формуле

$$n \ge \frac{N}{\gamma_c N_{min}},\tag{8.10}$$


где N_{min} — меньшее из значений расчетного усилия для одного болта, взятое из условий прочности на срез или смятие (на растяжение для растянутых болтов).

Расстояние между центрами болтов в любом направлении:

- минимальное 2.5d (для соединяемых элементов из стали с пределом текучести свыше $380 \text{ M}\Pi a 3d$);
 - максимальное 8d или 12t.

Расстояние от центра болта до края элемента:

- минимальное вдоль усилия 2d;
- минимальное поперек усилия, при обрезанных кромках листов 1,5d, прокатных кромках 1,2d;
 - максимальное 4*d* или 8*t*.

