Силы в природе

«Как это удивительно – обнаружить, что все явления природы управляются столь небольшим числом сил»

М. Фарадеев

Автор проекта **Гаврилова Дарья**ученица 7л класса
СОШ №617

Кистанова Ольга Павловна учитель физики

Обоснование выбора темы

Данная тема заинтересовала меня тем, что она очень важна в жизни и используется постоянно. Ни одного механизма нельзя было бы сделать, если не знать силы природы. Каждую секунду мы сталкиваемся с ними, не замечая этого. Они кажутся нам привычными и понятными.

Но все-таки стоит разобраться в них, и, возможно, найти ответы на неизвестные вопросы...

Цели

Создать учебное пособие по теме: «Силы в природе»

<u>Задачи</u>

Изучить и проанализировать литературу по этому вопросу.

Выработать схему изложения материала по каждой силе.

Решить проблему наглядности изложения.

Придумать форму проверки теоретических знаний.

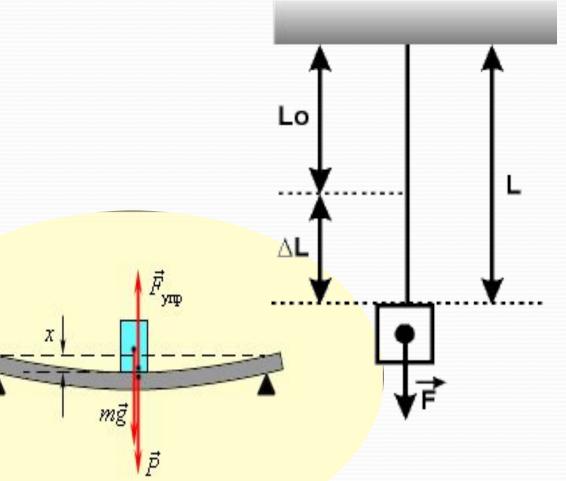
Методы решения

Работа с теоретическим материалом.

Поиск рисунков.

Подбор задач и вопросов для викторины.

Решение отобранных задач.


Создание презентации.

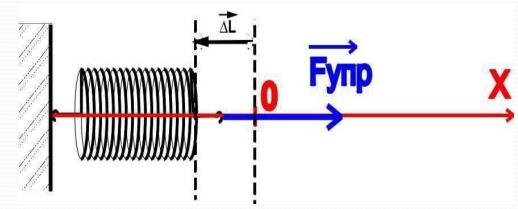
Сила упругости. Закон Гука

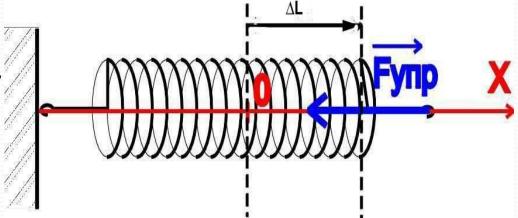
Деформации бывают упругие и пластические. Мы будем говорить об упругих.

Сила упругости — это сила возникающая при деформации тел. Эта сила стремится вернуть тело в исходное положение.

Упругие деформац<mark>ии подчиняются закону Гука.</mark>

Закон Гука:

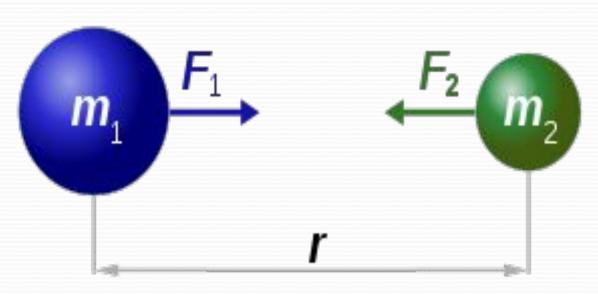

Сила упругости, возникающая при малой деформации тела, прямо пропорциональна значению деформации и направлена в сторону, противоположную направлению смещения частей этого тела.


 $F_{yпp}=kx$, где

_**_F**_– сила упругости

<u>**k**</u> – коэффициент пропорциональности, характеризующий силу, возникающую при удлинении тела, называемый жесткостью.

x = **IDLI** – удлинение (деформация) тела Единица измерения в СИ – 1Н на 1м Закон Гука справедлив только для упругих деформаций.

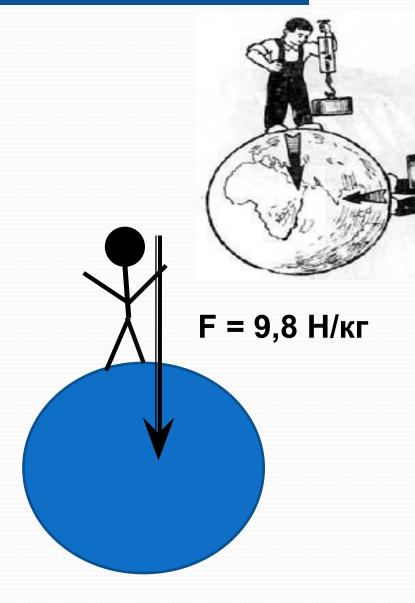


Всемирное тяготение

Все тела во Вселенной имеют свойство притягивать к себе друг друга. Это явление называется законом Всемирного тяготения.

$$F = G \frac{m_1 m_2}{r^2}$$

<u>**G**</u> – гравитационная постоянная, <u>**m1, m2**</u> – массы тяготеющих тел, <u>**R**</u> – расстояние между телами.


$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

Сила тяжести

Сила тяжести — это частный случай силы всемирного тяготения, она приложена к телу и направлена к центру

F = mg<u>ш</u> – масса глела,

<u>д</u> – постоянная тяготения Земли, равна 9,80665 Н/кг. Движение тела под действием силы тяжести называют свободным падением. Свободное падение любых тел происходит совершенно одинаково.

Вес тела. Невесомость

Вес тела – это сила, которая вследствие притяжения к Земле действует на опору или растягивает подвес. Вес тела и сила реакции опоры – это силы действия и противодействия. Вес тела приложен к опоре или подвесу, а сила реакции опоры – к телу. Вес направлен вдоль подвеса или перпендикулярно поверхности опоры.

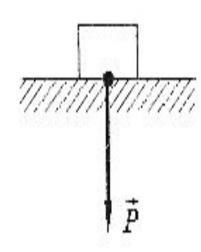
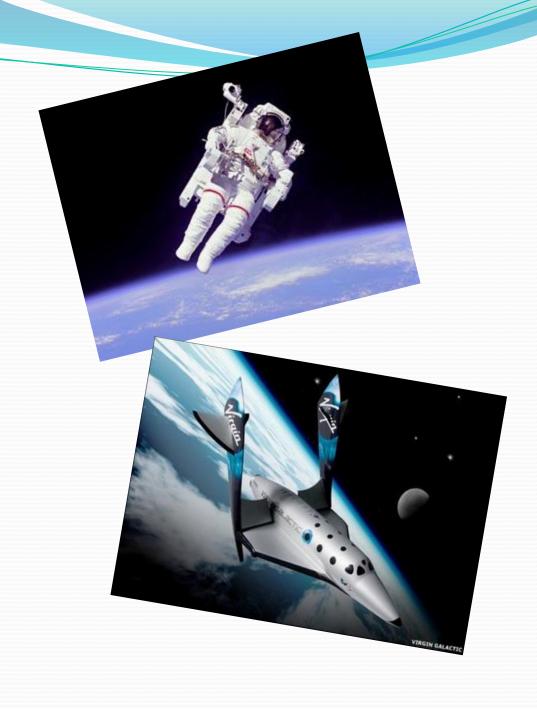



Рис. 5

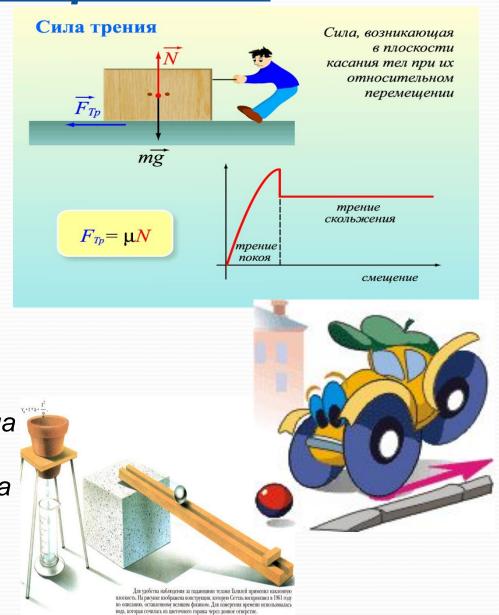
Р=mg, но

в том случае, если вес численно равен силе тяжести, если опора горизонтальна, а подвес вертикален и тело находится в состоянии покоя.

Если значение веса равно нулю, то при свободном падении тела опора или подвес не испытывают действия тела вследствие его притяжения к Земле, то есть тело находится в состоянии невесомости.

Сила трения

Сила трения — это сила, которая возникает при движении одного тела по другому или попытке движения.


Формула по закону Кулона-Амонтона:

Fmp =µP, г∂е

<u>µ</u> – коэффициент трения, безразмерная величина,

Р – вес тела.

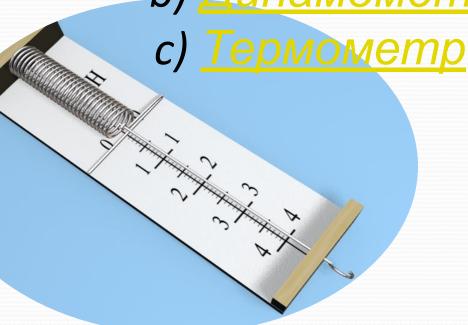
Сила трения зависит от типа соприкасающихся при движении поверхностей и веса тела (при увеличении веса тела сила трения о ту же поверхность увеличивается).

Направлена в сторону, противоположную скорости движения тела, параллельно поверхности. Приложена к телу. Бывает:

✔Сила трения скольжения

✔Сила трения качения

✔Сила трения покоя



Викторина

1	2	3	4
5	6	Z	8
9	<u>10</u>	<u>11</u>	<u>12</u>

Можно ли с помощью динамометра измерять силы в кабине космического горабля?

Конечно, так и нужно делать

Нет, показания

будут

неправильные.

с) Нет разницы, где

измерять силы

Почему тела, находящиеся в одной комнате, несмотря на взаимное притяжение, не приближаются друг к другу?

а) <u>Сила притяжения Земли сильнее</u> <u>силы притяжения тел</u>

Тела не могут притягивать друг друга

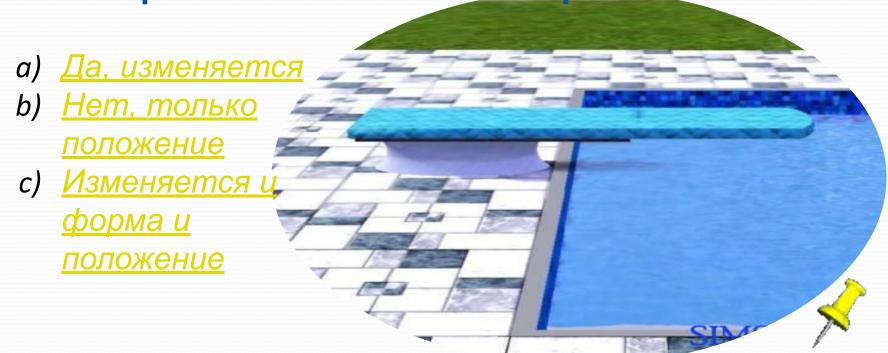
с) <u>Силой притяжения обладает</u> <u>только магнит</u>

- а) <u>Вода развивает скорость</u> <u>большую, чем снег и</u> <u>спускается с крыши</u>
- b) Сила трения и шершавая поверхность снега не дает ему скатываться
- с) <u>Вода тяжелее снега и</u> потому спускается вниз, а снег легче и остается

На столе лежит стопка из 10 одинаковых книг. Что легче: сдвинуть пять верхних или вытянуть из стопки четвертую

а) Сдвинуть

пять

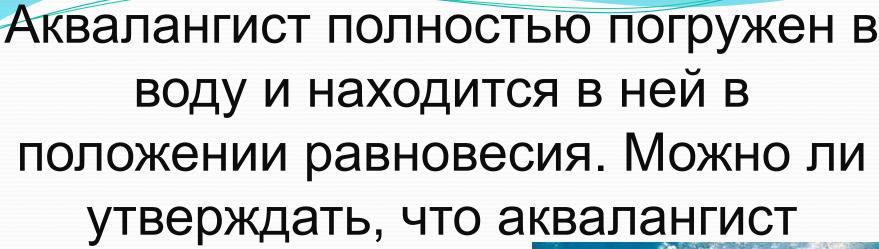

верхних

b) Bumahymb4
KHUZY

с) <mark>Одинаково</mark> сложно

невесомости?

a) <u>В начале</u> <u>прыжка</u>


b) <u>В конце</u> падения

с) На середине

Одинаковые или разные силы тяжести действуют на птицу, когда она сидит на ветке и когда находится в полете?

- а) <u>Разные</u>
- b) <u>Одинаковые</u>
- с) Сила тяжести вообще не действует на птицу

Почему пуговица, оторвавшись, падает на землю, а не притягивается к человеку, ведь она

притягивать к себе
тела
Сила притяжения Земли
сильнее силы
притяжения человека
Маленькие тела
притягиваются к
большим телам

Дайте физическое обоснование пословицы: «Коси, коса, пока роса. Роса долой – и мы домой».

Какую зависимость между физическими величинами иллюстрирует пословица «Натягивай лук по расстоянию до цели»?

Верно

Hebenho

Выводы

Работа над проектом помогла мне глубже понять природу сил, причины возникновения, результаты их действия, значение, которое они оказывают в повседневной жизни и деятельности человека.

Считаю, что данная работа может помочь и другим ученикам проверить свои знания по теме «Силы в природе».

Задания викторины подобраны таким образом, что могут быть интересны не только на уроке физики, но и любом другом классном мероприятии.

Jiumepamyp

a

- 1. Г.Н. Степанова, Физика, 7 кл., Санкт-Петербург «СТП Школа» 2006
- 2. Г.Н. Степанова, А.П. Степанов, Сборник вопросов и задач по физике, Санкт-Петербург «Валерия СПД» 2001
- 3. Сайт Социальный навигатор
- 4. physics.ru
- 5. wikipedia.ru
- 6. epizodsspace.airbase.ru
- 7. scienceblog.ru