Расчет и конструирование фермы. Определение нагрузок на ферму. Определение усилий в стержнях фермы.

Выполнили:

Демченко Виктория Шестерова Екатерина Группа 2015/1

ПОРЯДОК РАСЧЕТА ФЕРМ.

Принят следующий порядок расчета ферм.

- І. Определение узловых нагрузок, действующих на ферму.
- 2. Определение усилий в стержнях фермы.
- 3. Подбор поперечного сечения нижнего пояса.
- 4. Подбор поперечного сечения верхнего пояса.
- 5. Подбор сечений раскосов.
- 6. Подбор сечений стоек.
- 7. Расчет и конструирование опорного узла.
- 8. Расчет и конструирование промежуточных узлов.

Рекомендуется после выполнения первых шести пунктов этого перечня сразу же приступить к вычерчиванию фермы и в дальнейшем вести расчет и конструирование параллельно.

1. ОПРЕДЕЛЕНИЕ УЗЛОВЫХ НАГРУЗОК.

При определении усилий принимается, что все нагрузки (включая собственный вес фермы) приложены к узлам верхнего пояса, в виде сосредоточенных сил G и P. Сила G - постоянная нагрузка (собственный вес). Сила P - временной нагрузки (снеговая нагрузка). Постоянная расчетная узловая нагрузка определяется по формуле:

$$G=(q+q_{cs}) \cdot a \cdot d/cos(\alpha)$$
.

Где :

q — полная расчетная постоянная нагрузка на 1 м² поверхности кровли,

q_{св} – расчетное значение собственного веса фермы, приведенное к 1 м² поверхности кровли,

а – шаг ферм,

d – длина горизонтальной проекции панели фермы,

α – угол наклона верхнего пояса.

Нагрузку q можно определить так:

Нагрузку q можно определить так:

 $q = q_1 + q_2 + q_3$

где: $q_1 - coбственный вес 1 м^2$ покрытия (гидроизоляционный рубероидный ковер, настилы, утеплитель) с учетом коэффициента надежности по нагрузке γ_f (при учете собственного веса утеплителя $\gamma_f = 1, 2, \, для \, ocmaльных$ материалов $\gamma_f = 1, 1$);

q₂ — собственный вес прогона, отнесенный к 1 м² площади покрытия:

 $q_2 = A_{np} \cdot \gamma \cdot \gamma_f \cdot (1/d),$

где: A_{np}^{\cdot} – площадь поперечного сечения прогона, γ – объемный вес древесины, определяемый по данным, приведенным в <u>приложении 1</u>;

q₃ — собственный вес стропильной ноги, отнесенный к 1м² площади покрытия: **q**₃ = **A**_{cmp} · **γ** · **γ**_f · **(1/C)**, где: **A**_{cmp} — площадь поперечного сечения стропильной ноги, С - расстояние между стропильными нога́МФ (Маз стропил). Нагрузка qсв определяется по формуле:

где: p_{ch} — расчетная снеговая нагрузка на 1 м 2 поверхности кровли,

I - пролет фермы,

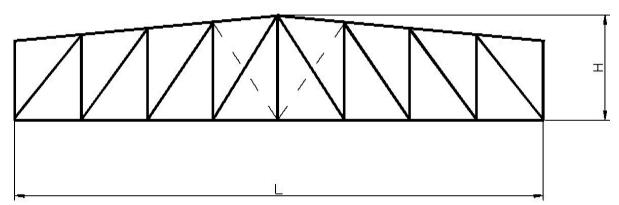
Временная узловая нагрузка определяется по формуле:

$$P = P_{\text{\tiny CH}} \cdot a \cdot \frac{d}{\cos \alpha}$$

Кроме вертикальных нагрузок, на фермы также действуют горизонтальные – ветровые нагрузки. Однако, при принятых уклонах кровли (угол наклона α<30°), согласно действующим нормам проектирования, ветровые нагрузки на фермы не учитываются.

2. ОПРЕДЕЛЕНИЕ УСИЛИИ В СТЕРЖНЯХ ФЕРМЫ.

При определении усилий в элементах стержневой фермы рассматриваемого курсового проекта все нагрузки считают приложенными в узлах верхнего пояса в виде сосредоточенных сил G и P, узлы при этом считают шарнирными. Рассмотрим метод с использованием числовых таблиц усилий от некоторых условных единичных нагрузок.

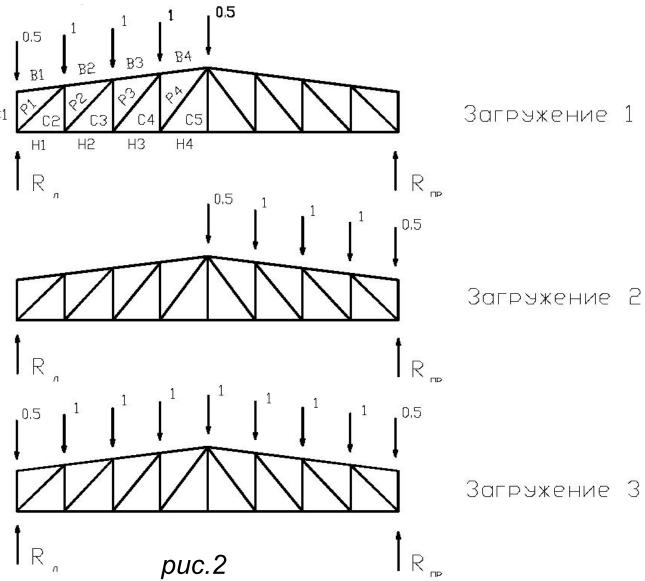

Ищем наибольшие усилия в каждом элементе фермы при самой невыгодной комбинации временных нагрузок. Временная нагрузка может иметь следующие положения:

- а) распределена по всему пролету фермы;
- б) распределена односторонне на половине пролета фермы.

Постоянная нагрузка (собственный вес) распределена по всему пролету фермы.

Для работы поясов наихудшие условия получаются при временной нагрузке, распределенной по всему пролету фермы. Усилия в решетке ферм обычно достигают наибольших значений при односторонней временной нагрузке на половине пролета фермы. Почти во всех схемах ферм, кроме треугольной, односторонняя нагрузка вызывает перемену знака усилий в элементах решетки, расположенных в средней части. При появлении сжимающих усилий в средних или близких к середине стойках полигональных ферм в этих панелях ставят дополнительный встречный раскос (на рис.1 показан пунктиром). Эти дополнительные "обратные" раскосы работают при одностороннем загружении временной

нагру рабоі



2.1. Определение усилий в полигональной

ферме.

Рассмотрим следующие три загружения полигональной фермы (puc.2).

В <u>таблице</u> загружения

Определить наибольшие усилия от реальных нагрузок в стержнях фермы можно следующим образом:

$$N_{max}$$
 = N_G + N_P , где N_G — усилие от постоянной нагрузки $N_G = N_{\rm EJ}^{(3)} \cdot G$

 N_{p} — усилие от временной нагрузки (как было сказано выше, временная нагрузка может быть приложена в нескольких комбинациях, поэтому N_{p} может иметь тройное значение: $N_{p} = N_{EJ}^{(2)} \cdot P$; $N_{p} = N_{EJ}^{(3)} \cdot P$.

Из этих трех значений нужно выбрать то, которое в сумме с N_G даст максимальное усилие в элементе фермы. Отметим, что для поясов фермы, как уже было сказано выше, N_P определяет общозначно:

2.2. Определение усилий в треугольной ферме.

Так как в треугольных фермах при одностороннем загружении временной нагрузкой работают только стержни загруженной половины этих ферм (стержни решетки незагруженной половины совершенно не работают), достаточно рассмотреть одну схему загружения (загружение № 3)
Максимальное усилие в стержнях от реальной постоянной и временной нагрузки определяют как
Nmax= Ned · (G + P),
где Neд см. в табл. 2

Приложение 1 Плотность древесины

Порода древесины	Плотность древесины КГ/м³ в конструкциях для условий эксплуатации	
	A1, A2, Б1, Б2	Всех остальны х
Хвойные: лиственница, сосна, ель, пихта, кедр Твердые	650 500	800 600
лиственные: дуб, береза, бук, ясень, клен, граб, акация, вяз. Мягкие	700	800
<u>лиственные:</u> осина, тополь,	500	600

Элемент	Усилия в стержнях фермы		
	Загружение 1	Загружение 2	Загружение 3
B1	0	0	0
B2	-2,43	-0,97	-3,4
В3	-3,55	-1,77	-5,32
B4	-3,67	-2,44	-6,11
H1	2,42	0,97	3,39
H2	3,53	1,76	5,29
Н3	3,65	2,43	6,08
H4	3,0	3,0	6,0
P1	-3,48	-1,39	-4,87
P2	-1,68	-1,20	-2,88
P3	-0,19	-1,06	-1,25
P4	1,08	-0,95	0,13
C1	-0,5	0	-0,5
C2	1,26	0,9	2,16
C3	0,15	0,82	0,97
C4	-0,86	0,76	-0,1
C5	0	0	0

Таблица 1

Таблица 2

Элемент	Усилия в элементах	
	фермы	
	$N_{E_{II}}$	
B1	-6,72	
B2	-5,38	
B3	-4,03	
H1	6,25	
H2	6,25	
H3	5,0	
P1	-1,34	
P2	-1,6	
C1	Ö	
C2	0,5	
C3	2,0	