	Evgeniy N. Pavlovskiy, Ph.D., head of the NSU Stream Data Analytics and Machine Learning lab.
Quan	1 0 1 1
Tum	
Se	1 0 -1
Man	All Things Are Number
Tics	1 0 Pythagoras

Bra-ket notation (Dirac, 1939)

- \cdot *V* vector (Hilbert) space, \mathbb{F} field
- $|\psi\rangle$ *pure state* (vector, or operator $\mathbb{F} \to V$) ket
- $\langle \psi |$ effect of state $| \psi \rangle$ (dual vector, dual operator $V \to \mathbb{F}$ Hermitian conjugate) bra
- *Inner product* of $|\psi\rangle$ and $|\varphi\rangle$ is $\langle\psi|\varphi\rangle$

Outer product

• Outer product $|w\rangle\langle v|$ for $w \in W, v \in V$ is a $V \to W$ operator: $(|w\rangle\langle v|)(|v'\rangle) \equiv |w\rangle\langle v|v'\rangle = \langle v|v'\rangle|w\rangle$

• Arbitrary $A: V \to W$ can be written

in a basis $\{|v_i\rangle\}_i$ for V and $\{|w_j\rangle\}_j$ for W:

$$A = \sum_{ij} m_{ij} |w_j\rangle \langle v_i|,$$

where $m_{ij} = \langle w_j | A | v_i \rangle$

Eigenvectors and eigenvalues

- $A = \sum_i \lambda_i |i\rangle\langle i|$, if $|i\rangle$ is an orthogonal basis in which A is diagonal.
- $|i\rangle$ are *eigen vectors*
- λ_i are eigen values
- Easy to check:

$$A|i\rangle = \lambda_i|i\rangle$$

Density operator (matrix)

- If $|\varphi_i\rangle$ are pure states,
- $\{p_i\}$ are probabilities over them, then

$$\rho \equiv \sum_{i} p_{i} |\varphi_{i}\rangle\langle\varphi_{i}|$$
 is a *dense operator*

• Positive operator.

$$\langle v|A|v\rangle \geq 0$$
 for all v

• Theorem: ρ is a density operator iff it's a positive Hermitian operator with trace = 1.

Trace inner product

- A and B are density matrices same dimension
- $tr(A^TB)$
- $A = \sum_{i} p_i |i\rangle\langle i|$ and $B = \sum_{j} q_j |j\rangle\langle j|$
- $tr(A^TB) = tr(\sum_i p_i |i\rangle\langle i|\sum_j q_j |j\rangle\langle j|) =$

$$= \sum_{ij} p_i q_j \langle i|j \rangle tr(|i\rangle \langle j|)$$

$$= \sum_{ij} p_i q_j \langle i|j \rangle \langle i|j \rangle$$

$$= \sum_{ij} p_i q_j \langle i|j \rangle^2$$

Distributional Semantics

- +"You shall know the word by the company it keeps" (Firth)
 - Obtain meaning high dimensional vector representations from large corpora automatically
- Compositionality
 - DS can not be applied for entire sentence (lack of frequency)
- Entailment
 - w entails v if the meaning of a word w is included in the meaning of a word v (w is-a v) subsumption relation
 - non symmetric

Distributional Inclusion Hypothesis

- If u is semantically narrower than v, then a significant number of salient distributional features of u are also included in the feature vector of v:
 - Hypothesis 1: If v => w then all the characteristic features of v is expected to appear in w.
 - Hypothesis 2: If all the characteristic features of v appear in w, then v => w.

Category Theory

- A monoidal category C is a category consisting of the following:
 - a functor \otimes : $C \times C \rightarrow C$ called the *tensor product*
 - an object $I \in \mathcal{C}$ called the *unit object*
 - a natural isomorphism whose components $(A \otimes B) \otimes C \xrightarrow{\alpha_{A,B,C}} A \otimes (B \otimes C)$ are called the *associators*
 - a natural isomorphism whose components $I \otimes A \overset{\lambda_A}{\to} A$ are called the *left unitors*
 - a natural isomorphism whose components $A \otimes I \overset{\rho_A}{\to} A$ are called the *right unitors*

Category Theory

- The objects of the category are thought to be types of systems
- A morphism $f: A \to B$ is a process that takes a system of type A to a system of type B.
- for $f: A \to B$ and $g: B \to C$, $g \circ f$ is the composite morphism that takes a system of type A into a system of type C by applying the process g after f.
- Morphisms of type $\psi: I \to A$ are called elements of A.

Compact closed categories

• A monoidal category is *compact closed* if for each object A, there are also left and right dual objects A^r and A^l , and morphisms

$$\eta^{l}: I \to A \otimes A^{l} \quad \eta^{r}: I \to A \otimes A^{r}$$

$$\epsilon^{l}: A^{l} \otimes A \to I \quad \epsilon^{r}: A \otimes A^{r} \to I$$

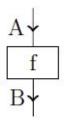
that satisfies

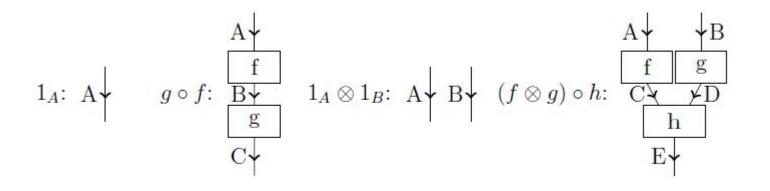
$$(1_A \otimes \epsilon^l) \circ (\eta^l \otimes 1_A) = 1_A$$
$$(\epsilon^r \otimes 1_A) \circ (1_A \otimes \eta^r) = 1_A$$
$$(\epsilon^l \otimes 1_{A^l}) \circ (1_{A^l} \otimes \eta^l) = 1_{A^l}$$
$$(1_{A^r} \otimes \epsilon^r) \circ (\eta^r \otimes 1_{A^r}) = 1_{A^r}$$

• The maps of compact categories are used to represent *correlations*, and in categorical quantum mechanics they model maximally entangled states.

Graphical calculus

$$f:A\to B$$





$$\psi: I \to A$$

$$\psi$$
: A

$$\pi \circ \psi$$
:
 π

 $\pi: A \to I$

Graphical calculus

$$\eta^r$$
: $A^r A$

$$\eta^r : A^r A \eta^l : A A^l \epsilon^r : A A^r \epsilon^l : A^l A$$

$$\epsilon^r$$
: $A A'$

$$\epsilon^l$$
: A^l A

Snake identities

Snake identities
$$(1_{A} \otimes \epsilon^{l}) \circ (\eta^{l} \otimes 1_{A}) = 1_{A}$$

$$(\epsilon^{r} \otimes 1_{A}) \circ (1_{A} \otimes \eta^{r}) = 1_{A}$$

$$(\epsilon^{l} \otimes 1_{A^{l}}) \circ (1_{A^{l}} \otimes \eta^{l}) = 1_{A^{l}}$$

$$(1_{A^{r}} \otimes \epsilon^{r}) \circ (\eta^{r} \otimes 1_{A^{r}}) = 1_{A^{r}}$$

$$A = \downarrow$$

$$A_{A^{l}}$$

$$A_$$

$$\begin{array}{c}
A \\
A \\
A^{l}
\end{array}$$

$$\begin{array}{c}
A \\
A^{l} \\
A^{l}
\end{array}$$

$$\begin{array}{c}
A \\
A^{l} \\
A^{l}
\end{array}$$

$$\begin{array}{c}
A \\
A \\
A \\
A^{r}
\end{array} =
\begin{array}{c}
A \\
A^{r} \\
A^{r}
\end{array}$$

Swing rule

Compositional Distributional Model

- Pregroup grammars (Lambek)
- A partially ordered monoid $(P, \leq, \cdot, 1)$ consists of:
 - a set *P*
 - a monoid multiplication operator ·: P × P → P satisfying the condition

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 for all $a, b, c \in P$

• and thy monoidal unit $1 \in P$ where for all $a \in P$

$$a \cdot 1 = a = 1 \cdot a$$

• a partial order \leq on P

Pregroup (Lambek, 2001)

• A pregroup $(P, \leq, \cdot, 1, (-)^l, (-)^r)$ is a partially ordered monoid in which each element a has both a left adjoint a^l and a right adjoint a^r such that

$$a^l a \le 1 \le a a^l$$
 and $a a^r \le 1 \le a^r a$

- Adjoints have properties:
 - Uniqueness: Adjoints are unique
 - Order reversal: If $a \le b$ then $b^r \le a^r$ and $b^l \le a^l$
 - The unit is self adjoint: $1^l = 1 = 1^r$
 - Multiplication operation is self adjoint: $(a \cdot b)^l = b^l \cdot a^l$ and $(a \cdot b)^r = b^r \cdot a^r$
 - Opposite adjoints annihilate: $(a^r)^l = a = (a^l)^r$
 - Same adjoints iterate: $a^{ll}a^{l} \le 1 \le a^{rr}a^{r}$, $a^{lll}a^{ll} \le 1 \le a^{rrr}a^{rr}$, ...

Pregroup grammar

- $a \rightarrow b$ means $a \leq b$ (a reduces to b)
- "John likes Mary"
- "John" and "Mary" assigned to type n (noun)
- "likes" is assigned to compound type $(n^r s n^l)$
- "likes" takes a noun from the left and from the right, and returns a sentence

$$n(n^r s n^l) n \rightarrow 1 s n^l n \rightarrow 1 s 1 \rightarrow s$$

Basic types

• n: noun s: declarative statement

• j: infinitive of the verb g: glueing type

Pregroups as compact closed categories

• P is a concrete instance of a compact closed category

$$\eta^l = [1 \le p \cdot p^l]$$
 $\epsilon^l = [p^l \cdot p \le 1]$
 $\eta^r = [1 \le p^r \cdot p]$ $\epsilon^r = [p \cdot p^r \le 1]$

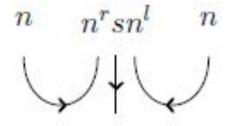
Test snake identities:

$$(1^p \otimes \epsilon_p^l) \circ (\eta_p^l \otimes 1_p):$$

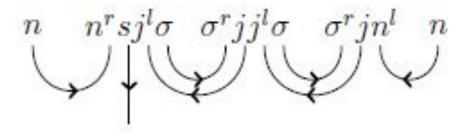
$$p = 1p \le pp^l p \le p1 = p$$

. . .

"John likes Mary"



"John does not like Mary"



FVect - finite dimensional vector space

- FVect finite dimensional vector spaces over the base field R together with linear maps, form a monoidal category
- FVect as a compact closed category.

Given a vector space V with basis $\{\overrightarrow{e_i}\}_i$

$$\eta_V^l = \eta_V^r : \mathbb{R} \to V \otimes V \\
1 \mapsto \sum_i e_i \otimes e_i \\
\epsilon_V^l = \epsilon_V^r : V \otimes V \to \mathbb{R} \\
\sum_{ij} c_{ij} \ v_i \otimes w_i \mapsto \sum_{ij} c_{ij} \langle v_i | w_i \rangle$$

FVect × P - categorical representation of meaning space

Objects in **FVect** are of the form (V, p), where V is the vector space representation of the meaning and p is the pregroup type. There exists a morphism $(f, \leq) : (V, p) \to (W, q)$ if there exists a morphism $f : V \to W$ in **FVect** and $p \leq q$ in **P**.

The compact closed structure of FVect and P lifts componentwise to the product category $FVect \times P$:

$$\eta^{l}: (\mathbb{R}, 1) \to (V \otimes V, p \cdot p^{l})$$

$$\eta^{r}: (\mathbb{R}, 1) \to (V \otimes V, p^{r} \cdot p)$$

$$\epsilon^{l}: (V \otimes V, p^{l} \cdot p) \to (\mathbb{R}, 1)$$

$$\epsilon^{r}: (V \otimes V, p \cdot p^{r}) \to (\mathbb{R}, 1)$$

Definition 6.3. An object (V, p) in the product category is called a **meaning space**, where V is the vector space in which the meanings $\overrightarrow{v} \in V$ of strings of type p live.

"From-the-meanings-of-words-to-the-meanings-of-words-to-the-meanings-of-words-to-the-sentence" map

• Let $v_1v_2 \dots v_n$ be a string of words, each v_i with a meaning space representation $\overrightarrow{v_i} \in (V_i, p_i)$. Let $x \in P$ be a pregroup type such that $[p_1p_2 \dots p_n \leq x]$. Then the meaning vector for the string is:

$$\overrightarrow{v_1v_2\dots v_n}\in (W,x)\equiv f(v_1\otimes v_2\otimes \cdots \otimes v_n),$$

• where f is defined to be the application of the compact closure maps obtained from the reduction $[p_1p_2 ... p_n \le x]$ to the composite vector space $V_1 \otimes V_2 \otimes \cdots \otimes V_n$.

Example: "John likes Mary"

- It has the pregroup type $nn^r sn^l n$
- vector representations \overrightarrow{John} , $\overrightarrow{Mary} \in V$ and $\overrightarrow{likes} \in V \otimes S \otimes V$
- The morphism in FVect × P corresponding to the map is of type:

$$(V \otimes (V \otimes S \otimes V) \otimes V, nn^r sn^l n) \rightarrow (s, S)$$

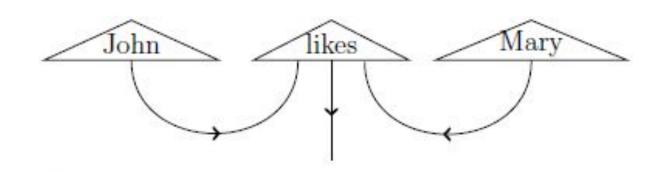
• From the pregroup reduction $[nn^rsn^ln \rightarrow s]$ we obtain the compact closure maps $\epsilon^r 1\epsilon^l$. In **FVect** this translates into:

$$\epsilon_V \otimes 1_S \otimes \epsilon_V : V \otimes (V \otimes S \otimes V) \otimes V \to S$$

Example: "John likes Mary"

 $\bullet \overrightarrow{John} \otimes \overrightarrow{likes} \otimes \overrightarrow{Mary}$

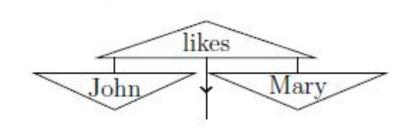
$$\overrightarrow{likes} = \sum_{ijk} c_{ijk} v_i \otimes s_j \otimes v_k$$



$$\overrightarrow{John\ likes\ Mary} = \epsilon_V \otimes 1_S \otimes \epsilon_V (\overrightarrow{John} \otimes \overrightarrow{likes} \otimes \overrightarrow{Mary})$$

$$= \sum_{ijk} \langle John | v_i \rangle s_j \langle v_k | Mary \rangle \qquad (\langle \epsilon_i^2 \rangle + \langle \delta_i \rangle + \langle \delta$$

$$(\langle \epsilon_V^r | \otimes 1_S \otimes \langle \epsilon_V^l |) \circ | \overrightarrow{John} \otimes \overrightarrow{likes} \otimes \overrightarrow{Mary} \rangle$$



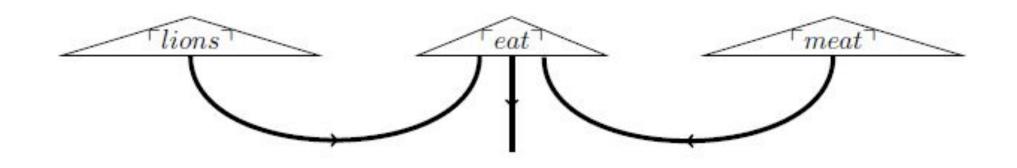
$$(\langle \overrightarrow{John} | \otimes 1_S \otimes \langle \overrightarrow{Mary} |) \circ | \overrightarrow{likes} \rangle$$


```
\lceil eat \rceil = (|sloths\rangle|\overrightarrow{plants}\rangle + |\overrightarrow{lions}\rangle|\overrightarrow{meat}\rangle)(\langle sloths|\langle plants| + \langle lions|\langle meat|)
                     =(|\overrightarrow{sloths}\rangle|\overrightarrow{plants}\rangle)(\langle \overrightarrow{sloths}|\langle \overrightarrow{plants}|)+
                                               (|\overrightarrow{sloths}\rangle|\overrightarrow{plants}\rangle)(\langle \overrightarrow{lions}|\langle \overrightarrow{meat}|)+
                                               (|\overrightarrow{lions}\rangle|\overrightarrow{meat}\rangle)(\langle \overrightarrow{sloths}|\langle \overrightarrow{plants}|)+
                                               (|\overrightarrow{lions}\rangle|\overrightarrow{meat}\rangle)(\langle \overrightarrow{lions}|\langle \overrightarrow{meat}|)
                     \sim (|\overrightarrow{sloths}\rangle\langle \overrightarrow{sloths}| \otimes |\overrightarrow{plants}\rangle\langle \overrightarrow{plants}|) +
                                               (|\overrightarrow{sloths}\rangle\langle \overrightarrow{lions}| \otimes |\overrightarrow{plants}\rangle\langle \overrightarrow{meat}|) +
                                               (|\overrightarrow{lions}\rangle\langle \overrightarrow{sloths}| \otimes |\overrightarrow{meat}\rangle\langle \overrightarrow{plants}|) +
                                                (|\overrightarrow{lions}\rangle\langle\overrightarrow{lions}|\otimes|\overrightarrow{meat}\rangle\langle\overrightarrow{meat}|)
```

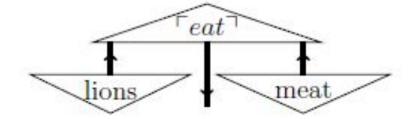

This is the density matrix representation of a pure composite state that relate "sloths" to "plants" and "lions" to "meat". If we fix the bases $\{\overrightarrow{lions}, \overrightarrow{sloths}\}$ for N_1 , and $\{\overrightarrow{meat}, \overrightarrow{plants}\}$ for N_2 , $\lceil eat \rceil : N_1 \otimes N_1 \to N_2 \otimes N_2$ has the following matrix representation:

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)$$

"Lions eat meat" . This is a transitive sentence, so as before, it gets assigned the pregroup type: nn^lsn^rn . The diagrammatic expression of the pregroup reduction is as follows:



This reduces to:



Explicit calculation gives:

```
(\epsilon_{N}^{l} \otimes 1_{S} \otimes \epsilon_{N}^{r})(\lceil lions \rceil \otimes \lceil eat \rceil \otimes \lceil meat \rceil) = \langle \overline{lions} | \overline{sloths} \rangle^{2} \langle \overline{plants} | \overline{meat} \rangle^{2} + \\ \langle \overline{lions} | \overline{sloths} \rangle \langle \overline{lions} | \overline{lions} \rangle \langle \overline{meat} | \overline{meat} \rangle \langle \overline{plants} | \overline{meat} \rangle + \\ \langle \overline{lions} | \overline{lions} \rangle \langle \overline{lions} | \overline{sloths} \rangle \langle \overline{meat} | \overline{meat} \rangle \langle \overline{plants} | \overline{meat} \rangle + \\ \langle \overline{lions} | \overline{lions} \rangle^{2} \langle \overline{meat} | \overline{meat} \rangle^{2} = 0 + 0 + 0 + 1
= 1
```


"Sloths eat meat" . This sentence has a very similar calculation to the one above, and has the result:

$$(\epsilon_N^l \otimes 1_S \otimes \epsilon_N^r)(\lceil sloths \rceil \otimes \lceil eat \rceil \otimes \lceil meat \rceil) = 0$$

"Mammals eat meat" . This sentence has the same pregroup types as the first sentence, and so has the same reduction map:

$$\begin{split} (\epsilon_N^l \otimes 1_S \otimes \epsilon_N^r) (\lceil mammals \rceil \otimes \lceil eat \rceil \otimes \lceil meat \rceil) \\ &= (\epsilon_N^l \otimes 1_S \otimes \epsilon_N^r) ((\frac{1}{2} \lceil lions \rceil + \frac{1}{2} \lceil sloths \rceil) \otimes \lceil eat \rceil \otimes \lceil meat \rceil) \\ &= \frac{1}{2} (\epsilon_N^l \otimes 1_S \otimes \epsilon_N^r) (\lceil lions \rceil \otimes \lceil eat \rceil \otimes \lceil meat \rceil) + \\ &\qquad \qquad \frac{1}{2} (\epsilon_N^l \otimes 1_S \otimes \epsilon_N^r) (\lceil sloths \rceil \otimes \lceil eat \rceil \otimes \lceil meat \rceil) \\ &= \frac{1}{2} \end{split}$$

Readings

- Esma Balkir. Using Density Matrices in a Compositional Distributional Model of Meaning. // Master thesis. University of Oxford. 2014
- Joachim Lambek. Type grammars as pregroups. Grammars, 4(1):21{39, 2001.