

Транзистор

ДЕМОВЕРСИЯ

В данную версию презентации включены 17 слайдов из 36, просмотр некоторых из них ограничен.

Презентация носит демонстрационный характер. Полная версии презентации содержит практически весь материал по теме «Транзисторы», а также дополнительный материал, который следует более детально изучить в профильном физико-математическом классе.

E. Co

Полную версию презентации можно приобрести.

Содержание

Из истории изобретения транзистора.

Биполярные и униполярные транзисторы.

Схематическое устройство транзистора.
Упрощённая конструкция сплавного биполярного транзистора.

Конструкция транзистора П 13 – П 15.

Принцип работы транзистора.

Схемы включения биполярных транзисторов.
Простейший усилитель на транзисторе.
ВАХ транзистора.
Биполярные фототранзисторы.
Устройство и схема включения фоторезистора.
Принцип действия фоторезистора.

🔭 - дополнительный материал

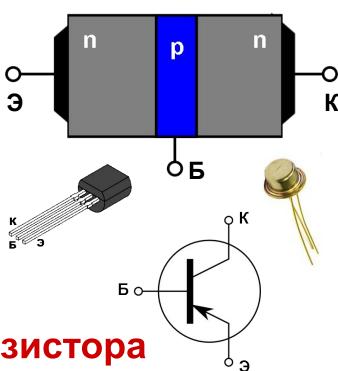
Переделка транзистора в фототранзистор.
Простая схема, достаточная для обеспечения безопасности жилища.
Схема автоматического включения освещения с наступлением темноты.

Транзистор - (от англ. transfer переносить и резистор), полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно Si или Ge), содержащего не менее трёх областей с различной электронной (n) и дырочной (p) проводимостью. Изобретён в 1948 г. американцами У. Шокли, У. Браттейном и Дж. Бардином.

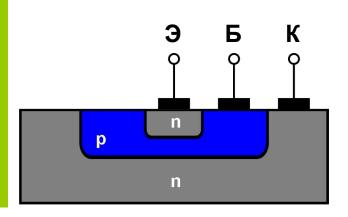
У. Шокли, У. Браттейн и Дж. Бардин получили Нобелевскую премию по физике в 1956 году «За исследования в области полупроводников и открытие эффекта транзистора»

У. Браттейн

Дж. Бардин



По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термин «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.



Биполярный транзистор – трехэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) – электронный тип примесной проводимости, р (positive) – дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» – «два»).

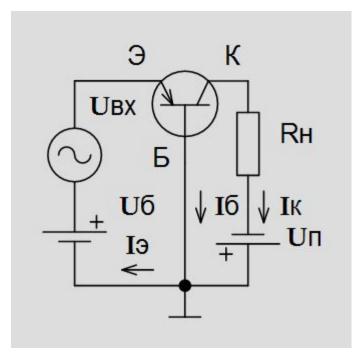
Схематическое устройство транзистора

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора – большая площадь р – пперехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Принцип работы транзистора

Принцип работы транзистора

Принцип работы биполярного транзистора рассмотрим на примере транзистора р-n-р типа включенного по схеме с (ОБ) общей базой.

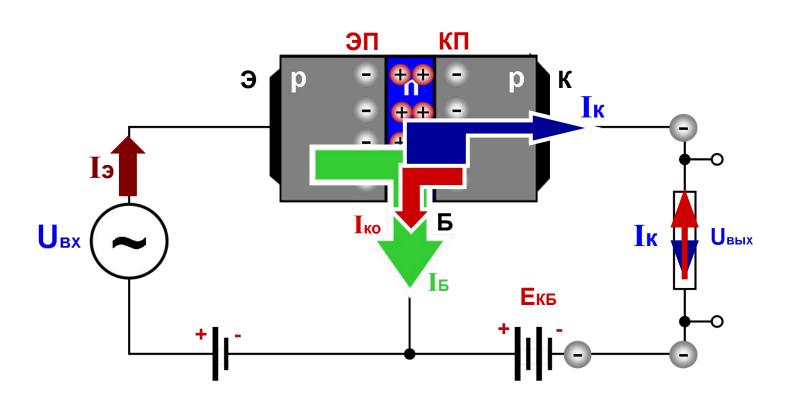

Между p- и n- областями возникают p-n переходы. Коллекторная цепь транзистора Переход между эмиттером и базой называется подключается к источнику с ЭДС – Екь, эмиттерным (\mathfrak{I}), а переход между коллектором и т.е. КП включен в обратном базой - коллекторным (**КП**). ЭП ΚП направлении. 6 Іко **U**вых Екб

В коллекторном переходе напряженность поля под действием **Е**кь возрастает. Это приводит к появлению незначительного обратного тока **I**ко в коллекторной цепи, обусловленного движением **неосновных** носителей зарядов. Этот ток существенно возрастает с увеличением температуры, поэтому его называют тепловым током коллектора – **I**ко

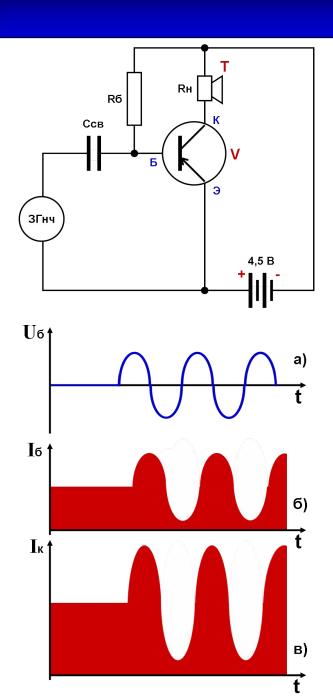
Схемы включения биполярных транзисторов

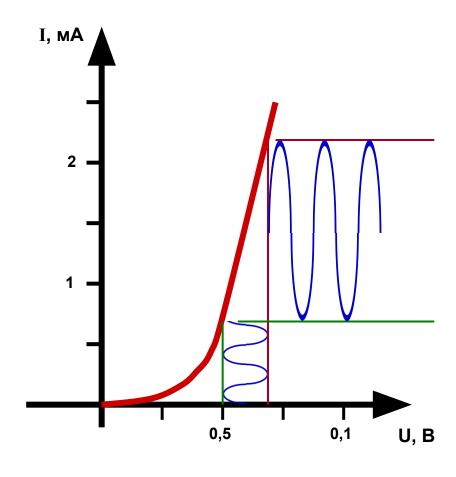
Схема включения транзистора с общей базой

В каскаде, собранном по схеме с общей базой, напряжение входного сигнала подают между эмиттером и базой транзистора, а выходное напряжение снимают с выводов коллектор-база. Включение транзистора р-n-р структуры по схеме с общей базой приведено на рисунке.



В данном случае эмиттерный переход компонента открыт и велика его проводимость. Входное сопротивление каскада невелико и обычно лежит в пределах от единиц до сотни ом, что относят к недостатку описываемого включения транзистора. Кроме того, для функционирования каскада с транзистором, включённым по схеме с общей базой, необходимо два отдельных источника питания, а коэффициент усиления каскада по току меньше единицы. Коэффициент усиления каскада по напряжению часто достигает от десятков до нескольких сотен раз.

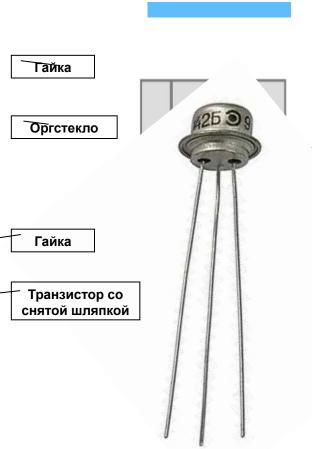

Простейший усилитель на транзисторе



Однако такая схема усилителя на транзисторе является неэффективной, так как в ней отсутствует усиление сигнала по току, и через источники входного сигнала протекает весь ток эмиттера *I*э. В реальных схемах усилителей на транзисторах источник переменного напряжения включают так, чтобы через него протекал только небольшой ток базы *I*б = *I*э – *I*к. Малые изменения тока базы вызывают значительные изменения тока коллектора. Усиление по току в таких схемах может составлять несколько сотен.

Биполярные фототранзисторы

Фототранзистором называют полупроводниковый транзистор с двумя электронно-дырочными переходами, ток которого увеличивается за счет подвижных носителей заряда, образующихся при облучении прибора светом.



Переделка транзистора в фототранзистор

Фототранзистор легко изготовить самостоятельно. Перед началом работы на транзистор приклеивают гайку для того, чтобы мягкий корпус не деформировался при переделке.

Осторожно спиливают надфилем шляпку транзистора МП42Б (или другого транзистора с большим коэффициентом усиления в аналогичном корпусе).

Получившееся отверстие сверху закрывают прозрачным органическим стеклом толщиной 0,1...0,4 мм.

Влияние температуры на режимы работы биполярных транзисторов

Чтобы германиевый транзистор не вышел из строя, температура его кристалла должна быть меньше примерно 70 °C, кремниевого транзистора – меньше 125 ... 150 ° С, а арсенид-галлиевого транзистора – меньше 150 ... 200 °C. Введение легирующих добавок несколько корректирует максимально допустимую температуру кристалла, а некоторые специально сконструированные транзисторы выдерживают и более высокую температуру. Так, согласно справочным данным, кремниевый биполярный транзистор КТ921В был разработан для применения в геофизической аппаратуре при температуре корпуса компонента не более +200 °C. При существенно более высокой температуре транзистора он испортится из-за необратимой перестройки кристаллической решётки. Нагрев биполярных транзисторов вызывает увеличения проводимости области базы и обратного тока коллектора. При повышении температуры корпуса транзистора от 20 °C до 60 °C обратный ток коллектора обычно может возрасти до шести раз. Следовательно, флюктуации (изменения) температуры оказывают очень существенное влияние на функционирование транзисторного каскада, вызывая значительные изменения режима его работы. Чтобы флюктуация температуры не привела, допустим, к возникновению автогенерации каскада, предназначенного для усиления, или другим вредным последствиям, необходимо применять цепи термостабилизации режимов работы транзисторов.