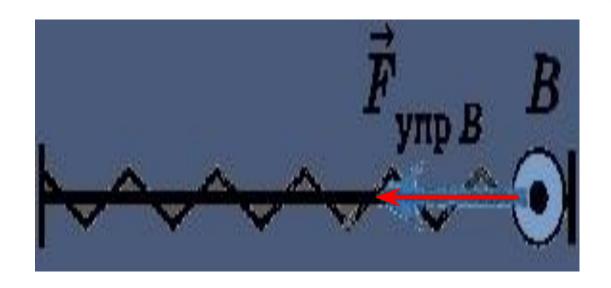

Превращение энергии при колебательном движении. Затухающие колебания

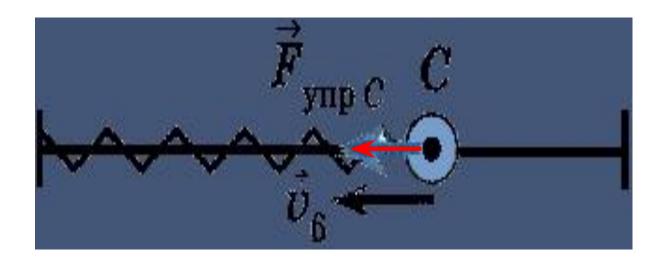
Цели урока:

- 1. Изучить возможные превращения энергии в колебательных системах.
- 2.Подтвердить справедливость закона сохранения механической энергии в колебательных системах.

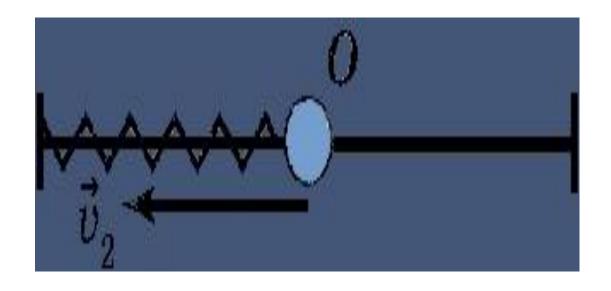
9 класс

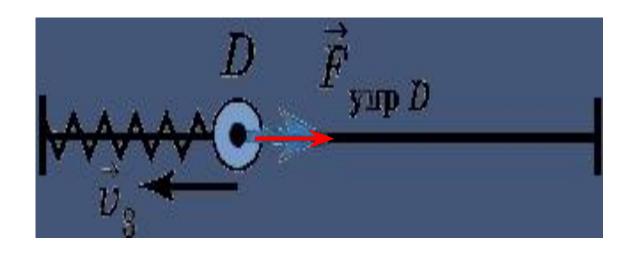

Направление	Сила	Скорость,	Потенциальна	Кинетическая	Полная
движения	упругости,	$ \mathcal{U} $	я энергия, Е _р	энергия, E _k	механическая
	F _{ynp}				,
Waziiiwa	, ,				Епол
От В к О					
От О к А					
От А к О					
От О к В					

Для любого промежуточного положения на пути ВО сумма потенциальной и кинетической энергии есть постоянная величина, равная первоначальному запасу потенциальной энергии колебательной системы.

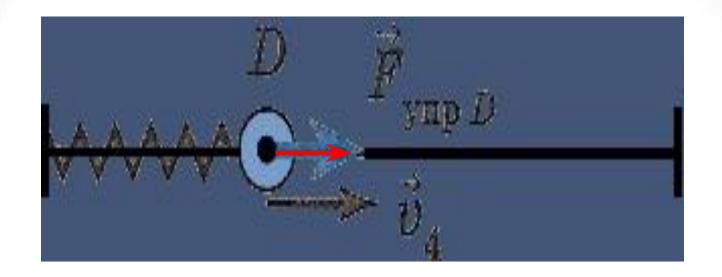

Откуда появилась первоначальная энергия шарика?

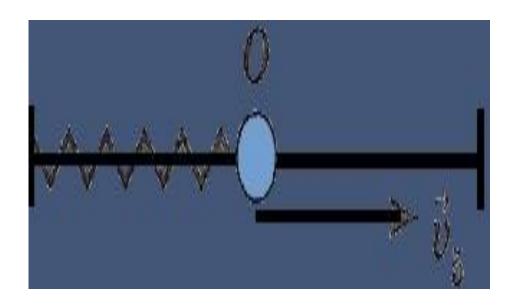
Откуда появилась первоначальная энергия шарика?

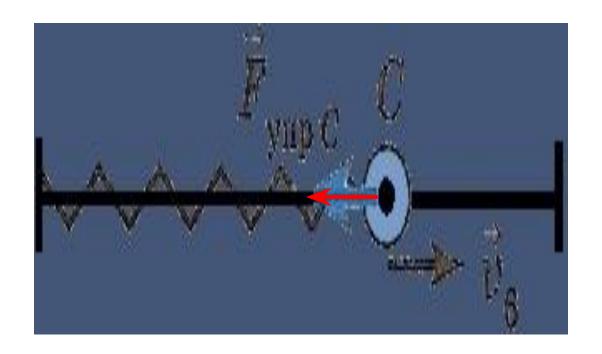

 Энергию сообщили системе, когда переводили шарик из точки О в точку В, растягивая при этом пружину.


- E_p=max, т.к. X=max
- $E_k = 0$, T.K. $\mathcal{U} = 0$

- Е_р↓, т.к. Х↓
- ullet E $_{\mathbf{k}}$ \uparrow , T.K. \mathcal{U} \uparrow


- E_p=0, т.к. X=0
- E_k =max, т.к. \mathcal{U} =max


- Е_р↑, т.к. Х↑
- ullet E $_{\mathbf{k}}$ \downarrow , T.K. \mathcal{U} \downarrow


- E_p=max, т.к. X=max
- $E_k = 0$, T.K. $\mathcal{U} = 0$


- Е_р↓, т.к. Х↓
- ullet E $_{\mathbf{k}}$ \uparrow , T.K. \mathcal{U} \uparrow

- E_p=0, т.к. X=0
- E_k =max, т.к. \mathcal{U} =max

- Е_р↑, т.к. Х↑
- ullet E $_{\mathbf{k}}$ \downarrow , T.K. \mathcal{U} \downarrow

- E_p=max, т.к. X=max
- $E_k = 0$, T.K. $\mathcal{U} = 0$

Потери энергии уходит на:

 Совершение работы по преодолению сил трения и сопротивления воздуха

Затухающие колебания

Механическая энергия

Внутренняя энергия

Амплитуда колебаний постепенно уменьшается

Через некоторое время колебаний прекращаются

Чем большее сопротивление испытывает колеблющееся тело, тем быстрее убывает амплитуда и скорее прекращаются колебания