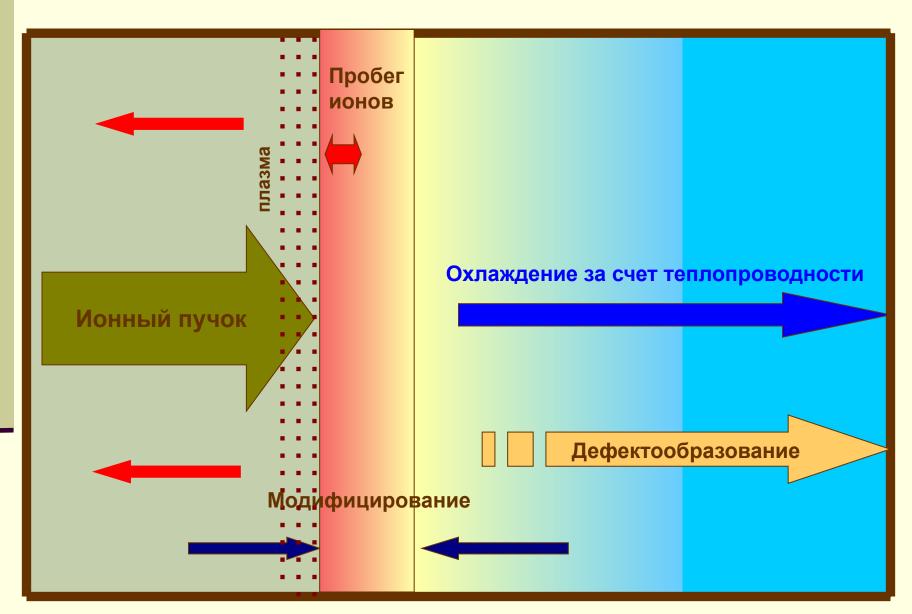

Получение объемных наноматериалов

І. Облучение потоками высокоэнергетических частиц


- Радиационно-пучковые технологии. Ионно-лучевые, ионноплазменные технологии и воздействие концентрац. потоков энергии для модификации материалов.
- Физико-химические процессы при взаимодействии ионов с твердым телом. Методы получения и транспортировки пучков заряженных частиц.
- Имплантация ионов в металлы и полупроводники
- Электронные пучки и их применение
- Мощные ионные пучки и их применение
- Потоки высокотемпературной импульсной плазмы и их применение
- Лазерное излучение и его применение

II.Пленочные технологии.

- CVD химическое осаждение
- PVD физическое осаждение
- Электроосаждение

- Радиационное воздействие м.б. использовано для модифицирования и создания новых материалов.
- Радиационная обработка включает следующие задачи:
 - Техника для обработки: создающая потоки ионов, атомов, электронов, плазмы и т.д.
 - Методы обработки: имплантация, распыление, осаждение, перемешивание, нагрев, деформирование, насыщение и др.
 - Регулируемые параметры при обработке: токи, потоки, флюенсы, энергия и вид излучения, масса частиц, температура облучения.
 - <u>Технологические задачи:</u> изменение топографии поверхности, активация поверхности, изменение структуры или химического состава, нанесение или удаление слоя, залечивание дефектов
 - <u>Результат обработки</u>, изменение шероховатости, глубина слоя, структура, состав и фазовое состояние слоев.
 - <u>Эксплуатационные свойства</u> созданные обработкой: износостойкость, коррозионная стойкость, прочность, твердость, термостойкость и др.

Механизм воздействия

Твердые растворы Металлические ионы НАНОРАЗМЕРНЫЕ ФАЗЫ Интерметаллиды, оксиды, карбиды Модифицированный Металлическ слой ая мишень Мишень

- Радиационно-пучковые технологии <u>используют</u> тепловую, кинетическую, электрическую и магнитную составляющую энергии и <u>различные способы подвода</u> к мишени: непрерывный, импульсный, импульсно-периодический, точечный, линейный, поверхностный, квазиобъемный.
- Модификация осуществляется за счет физических процессов:
 - Быстрый нагрев и охлаждение
 - Имплантация атомов/ионов в материал
 - Распыление или испарение поверхностного слоя
 - Плазмообразование на поверхности
 - Дефектоообразование в слое материала
 - Осаждение атомов на поверхность
 - Ионное перемешивание в поверхностном слое
 - Термическая и радиационно-стимулированная диффузия
 - Термические и структурные напряжения

- При модифицировании происходят различные структурные и фазовые изменения.
- Наиболее значимыми изменениями являются:
 - Увеличение параметра решетки
 - Разворот плоскостей упаковки атомов
 - Образование аморфных и ультрадисперсных фаз
 - Диспергирование микроструткуры
 - Накопление радиационных дефектов
 - Загрязнение примесями
 - Растворение и образование радиационно-стимулированных фаз
 - Расслоение твердых растворов
 - Создание пересыщенных твердых растворов
 - Радиационно-индуцированная сегрегация
 - Образование слоистых структур
 - Формирование дислокационных субструткур
 - Образование градиентных структурно-фазовых состояний

Виды радиационных технологий

- По носителям энергии и с учетом основного модифицирующего фактора
- 1 Ионно-пучковые технологии

моноэнергетические пучки ионов полиэнергетические пучки ионов

- 2 Ионно-плазменные технологии
- 3 Плазменные технологии

равновесная плазма неравновесная плазма

<u>4 Технологии, основанные на использовании</u> концентрированных потоков энергии

Виды облучения

<u> Ионные пучки</u>

Ускоренные ионы (и атомы) в виде моноэнергетических или полиэнергетических пучков являются рабочим телом ионно-пучковых и ионно- плазменных технологий

Используют ионы газовые или твердотельные (металлические)

Параметрами являются: энергия, поток, флюенс Ионно-пучковые технологии направлены на

- 1) получение новых материалов: нанесение пленок путем распыления, бомбардировка подложки в процессе нанесения, имплантация в объем материала для создания нового, ионно-пучковая эпитаксия
- 2) модифицирование материалов (поверхностного слоя): формирование рельефа путем распыления, изменение структуры путем имплантации, изменение элементного и фазового состава.

10

<u>Низкотемпературная плазма</u>

- Низкотемпературная плазма ($T \sim 10^4 \, \text{K}$) может быть равновесной ($T_e \approx T_i \approx T_a$) или неравновесной ($T_e \approx T_i \ll T_a$), где T_e , T_i , T_a температуры атомов, ионов и электронов соответственно.
- Перенос вещества в плазме осуществляется путем диффузии, направленных потоков атомов под действием градиентов температуры. Рабочим телом плазмы является (Ar, He, H_2, O_2, N_2) и воздух.

Направления:

- 1)Получение/синтез материалов: химический синтез (в том числе органический) веществ, полимеризация мономеров; экстрактивная металлургия, включая восстановление оксидов (или их диссоциацию) металлов в плазме и других газовых смесей; получение ультрадисперсных порошков; плазменная плавка металлов
- 2) Модификация материалов: формирование заданного рельефа (травление или очистка); нанесение покрытий на изделия; синтез химических соединений на поверхности; плазмохимическое насыщение поверхностного слоя азотом, углерода.

11

Ионно-плазменные технологии

- Одновременная или последовательная обработка поверхности ионами и плазмой.
- Использование ионно-плазменных технологий расширяет возможности обработки по сравнению с ионно-пучковыми технологиями так как позволяет чередовать операции распыления, нанесения покрытий и имплантацию ионов.
- Эффективна для получения функциональных покрытий и пленок. Осуществляется ряд операция необходимых для получения прочного сцепления с поверхностью, путем комбинации очистки, напыления ионного перемешивания.

Концентрированные потоки энергии (КПЭ)

Высокие потоки энергии (десятки и более Дж/см²) можно создавать мощными электронными пучками (МЭП), мощными ионными пучками (МИП), лазерным излучением (ЛИ), потоками высокотемпературной импульсной плазмы (ВТИП),

Общим для КПЭ является высокие плотности мощности ($\sim 10^{12}$ Вт/см 2), энергии (100 Дж/см 2), высокие градиенты температуры (10^6 - 10^8 K/см), высокие скорости нагрева и закалки (10^9 - 10^{11} K/с).

Получение материалов

путем испарения мишени и конденсации атомов, инициирования химических реакций на поверхности

Модифицирование поверхностного слоя

путем сверхбыстрой закалки, изменения элементного и фазового состава, формирования заданного рельефа путем оплавления, заглаживания или создания дефектов, объемное ударное упрочнение, удаление ранее нанесенных пленок и покрытий.