- Плотность материала ү, кг/м³
 - масса 1 м³ материала в том состоянии,
 в каком он будет использован
- Пористость материала $p = (V_{nop} / V_o) \cdot 100\%$
 - процентное содержание пор в материале,
 выражается отношением объема пор
 к общему объему материала

$$V_o = m / \gamma$$

 $V_{nop} = V_o - V_{ckenet} = (m / \gamma) - (m / \rho)$

$$p = 1 - (\gamma / \rho)$$

 $\gamma - плотность материала, $\rho - плотность скелета$$

Кирпич	Объемный вес γ, кг/м ³	Пори- стость <i>p</i> , %
Сухого прессования	1900	.27
Плотный машинный	1800	31
Слабопористый	1400	46
Пористый	1200	54
Высокопористый	800	69

Влажность материала

характеризует наличие в материале химически несвязанной воды

• Весовая влажность

$$\omega_{\rm B} = (m_{\rm влаги} / m_{\rm cyx o}) \cdot 100\% =$$

$$= ((m_{\rm вл o} - m_{\rm cyx o}) / m_{\rm cyx o}) \cdot 100\%$$

• Объемная влажность

$$\omega_{o} = (V_{BJAFM} / V_{CYX o}) \cdot 100\%$$

$$V_{\text{влаги}} = m_{\text{влаги}} / 1000, \qquad V_{\text{сух o}} = m_{\text{сух o}} / \gamma_{\text{сух}}$$

$$\omega_{o}$$
 = $m_{\text{влаги}}$ $\gamma_{\text{сух}}$ / 1000 $m_{\text{сух o}}$ = $\omega_{\text{в}}$ $\gamma_{\text{сух}}$ / 1000

Нормальные влажности некоторых материалов в наружных ограждающих конструкциях

	Объемный	Влажность м	патериала в %
Материал	Bec γ, κε/м³	весовая $\omega_{_{\rm B}}$	объемная ω
Кирпич красный в сплошных стенах . Кирпич красный в стенах с воздушными прослойками	1800 1800 1900 2000 1300 1000 700 350 1600 750	1,5 0,5 2,5 1,5 3 6 10 3 1 3,5	2,7 0,9 4,8 3 3,9 6 7 1,1 1,6 2,6 0,4
Минераловатные плиты	350 225	15 15 20 5	7,5 5,2 4,5 0,12

Примечание. Приведенные значения влажности материалов относятся только к конструкциям, правильно спроектированным и находящимся в нормальных условиях эксплуатации. При нарушении нормальных условий эксплуатации конструкций (особенно недостаточно просушенных после окончания строительства) влажность материалов может быть очень высокой.

• Q = λ (Δt / δ) S θ , Дж — количество тепла, проходящее через слой площадью S толщиной δ за время θ при разности температур Δt

Коэффициент теплопроводности материала
 характеризует способность материала в той или иной степени проводить тепло через свою массу

$$\lambda = Q \delta / (\Delta t S \theta), BT / (M K)$$

количество тепла, проходящее за 1 с через 1 м² слоя толщиной 1 м при разности температур на границах слоя в 1 градус

Коэффициент теплопроводности скелета

Кристаллические материалы 4 - 6 Вт/(м К)

Органические материалы 0,3 – 0,4

Пластмасса 0,2-0,3

Коэффициент теплопроводности воздуха

в порах размером 0,1-2 мм 0,02 – 0,03

Таблица 2 Зависимость λ от γ и p для глиняного обожженного кирпича

	Объемный	Пори-	Коэффициент но	теплопровод- сти
Кирпич	вес γ, <i>кг/м</i> ³	стость <i>p</i> ,	λ, ккал/м·ч·гра∂	в % от наи- большего значения х
Сухого прессования	1900	.27	0,7	100
Плотный машинный	1800	31	0,66	94
Слабопористый	.1400	46	0,45	64
Пористый	1200	54	0,38	54
Высокопористый	800	69	0,25	36

Таблица 2 Зависимость λ от γ и p для глиняного обожженного кирпича

	Объемный	Пори-	Қоэффициент но	теплопровод-	
Кирпич	вес γ, <i>кг/м</i> ³	стость <i>p</i> ,	λ, ккал/м·ч·град	в % от наи- большего значения λ	λ. Вт/м К
Сухого прессования	1900	.27	0,7	100	0,8
Плотный машинный	1800	31	0,66	94	0,76
Слабопористый	.1400	46	0,45	64	0,52
Пористый	1200	54	0,38	54	0,44
Высокопористый	800	69	0,25	36	0,29

Коэффициент теплопроводности

воздуха в порах размером 0,1-2 мм

0.02 - 0.03 BT/(M K)

воды 0,55 Bт/(м K)

льда 2,2 Вт/(м К)

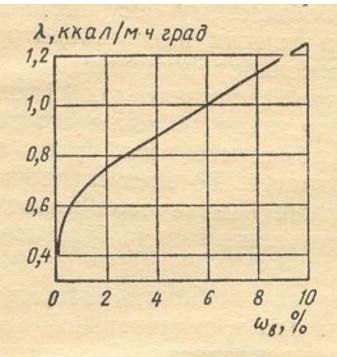


Рис. 4. Зависимость теплопроводности кирпичной кладки от влажности кирпича

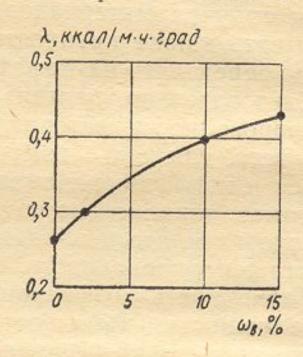


Рис. 5. Зависимость теплопроводности керамзитобетона объемного веса $1000~\kappa s/m^3$ от его влажности (по данным НИИМосстроя)

Таблица 4 Изменение λ древесины в зависимости от направления теплового потока

	04	λ древесины пр потока	ои направлении тепла	Увеличение λ при направлении потока	
Древесина	Объемный вес у, кг/м ³	перпендику- лярно волок- нам	параллельно волокнам	тепла параллельно во- локнам в %	
Сосна	550	0,15	0,3	100	
Дуб	800	0,2	0,35	75	

Данные по выбору расчетных значений коэффициентов теплопроводности в зависимости от условий эксплуатации ограждающих конструкций

Влажностный режим	Зонь	Зоны влажности по схематической карте						
помещений и значения относительной влажности в них	сухая	нормальная	влажная					
Сухой; ϕ <50%	Пониженные ния λ (графа А)	значе-	Нормальные зна- чения λ (графа Б)					
Нормальный; ф от 50 до 60%	Пониженные значения λ (гра- фа А)	Нормальные значения λ (гра- фа Б)	Расчетные значения λ, приведенные в графе Б, следует повышать на 10%					
Влажный; ф от 61 до 75% Мокрый 75%	Нормальные значения λ (гра- фа Б)		для наружных ограж- дающих конструкций, выполняемых из мед- ленно высыхающих материалов					

^{*} Наружными ограждающими конструкциями, выполняемыми из медленно высыхающих материалов, являются, например, стены сплошной кладки из силикатного кирпича или блоков, шлакобетона, гипсобетона, золобетона, газозолобетона, газосиликата, перлитобетона, керамзитобетона с объемным весом более 1200 кг/м³ и т. д.

Удельная теплоемкость с, Дж / (кг К) характеризует свойство материала поглощать тепло при повышении температуры

C = Q/(m·Δt) – количество тепла, необходимое
 для повышения температуры на 1 градус
 массы вещества в 1 кг

Удельная теплоемкость воды c = 4200, Дж / (кг K)

$$c = (c_{_{O}} + 0.01\omega_{_{B}})/(1+0.01\omega_{_{B}}) - \text{удельная теплоемкость}$$
 при влажности $\omega_{_{D}}$

С — удельная теплоемкость в сухом состоянии

• R =
$$\sigma$$
 T⁴, σ = 5,67·10 ⁻⁸ BT/(M^2 K⁴)

Q =
$$\sigma T^4 S \theta = 5,67(T_1/100)^4 S \theta$$
 (Дж)
Q = $\sigma \epsilon T_1^4 S \theta = 5,67\epsilon (T_1/100)^4 S \theta =$
= $C (T_1/100)^4 S \theta$ (Дж)

• Коэффициент излучения характеризует способность материала излучать тепло

$$C = Q / ((T_1/100)^4 S \theta)$$
 BT / ($M^2 K^4$)

– количество тепла излучаемого
 1 м² поверхности материала за 1 с в пустоту
 при абсолютной температуре поверхности 100 К

Коэффициент излучения

• Алюминий	0,26	
• Полированная сталь	1,4	
• Бетон	3,5	
• Кровельная сталь	3,9	
• Асбестовый картон	5,5	$BT/(M^2K^4)$

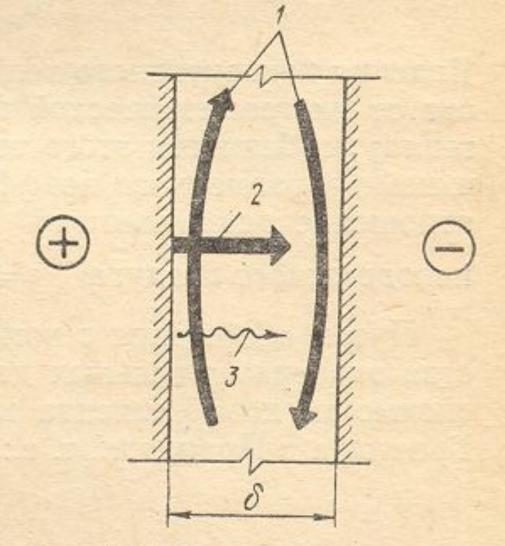


Рис. I.12. Схема передачи тепла через воздушную прослойку: 1 — путем конвекции; 2 — путем излучения; 3 — путем теплопроводности

•
$$q = q_T + q_K + q_\Pi$$

•
$$q_{_{\rm T}} = \lambda_{_{1}}(T_{_{1}} - T_{_{2}}) / \delta$$
 $\lambda_{_{1}} -$ коэффициент теплопроводности неподвижного воздуха

•
$$q_{_{\rm K}} = \lambda_{_2}({\rm T}_1 - {\rm T}_2) \, / \, \delta$$
 $\lambda_{_2} -$ условный коэффициент передачи тепла конвекцией

•
$$q_{_{\Pi}} = \alpha_{_{\Pi}} (T_{_{1}} - T_{_{2}})$$
 $\alpha_{_{\Pi}} -$ коэффициент теплоотдачи излучением

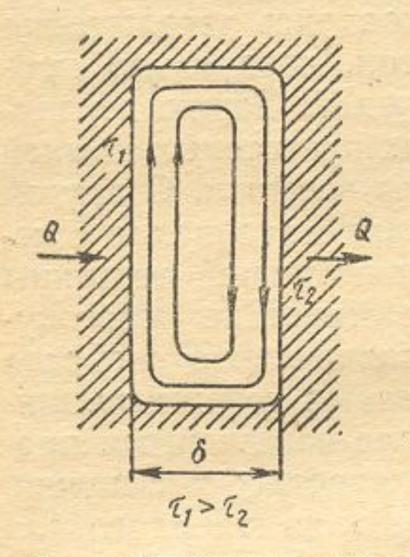


Рис. 19. Схема передачи тепла в воздушной прослойке

Значения величин $\lambda_1 + \lambda_2$ при температуре воздуха 0° С для вертикальных воздушных прослоек в зависимости от толщины прослойки δ и разности температур на ее поверхностях $\tau_1 - \tau_2^*$

	Значения $\lambda_1 + \lambda_2$ при δ в $c M$									
τ_1 - τ_2	1	2	3	5	7	10	12	15	20	25
1° 2,5° 5° 10° 15° 20° 25° 30°	0,02 0,02 0,021 0,022 0,024 0,026 0,028 0,029	0,021 0,027 0,032 0,038 0,042 0,045 0,048 0,05	0,029 0,036 0,043 0,051 0,056 0,061 0,064 0,067	0,042 0,053 0,063 0,075 0,083 0,089 0,094 0,099	0,054 0,068 0,081 0,096 0,106 0,114 0,121 0,126	0,07 0,089 0,106 0,125 0,138 0,149 0,157 0,164	0,08 0,101 0,121 0,142 0,158 0,17 0,18 0,19	0,096 0,12 0,143 0,17 0,188 0,202 0,214 0,224	0,12 0,15 0,178 0,213 0,236 0,253 0,268 0,28	0,14 0,177 0,207 0,255 0,276 0,297 0,314 0,329

Для горизонтальных прослоек при потоке тепла снизу вверх приведенные значения $\lambda_1 + \lambda_2$ увеличивать на:

20%	40%	42%	43%	38%	26%	20%	13%	6%	3%
-----	-----	-----	-----	-----	-----	-----	-----	----	----

Тепло, передаваемое излучением от более нагретой поверхности S_1 к поверхности S_2

Q = 5,67
$$\epsilon_{\Pi P} S_1 \Psi ((T_1/100)^4 - (T_2/100)^4)$$

ЕПР — приведенный относительный коэффициент излучения при теплообмене между двумя серыми поверхностями

— угловой коэффициент излучения

Q =5,67
$$\varepsilon_{\Pi P} S_1 \Psi ((T_1/100)^4 - (T_2/100)^4)$$

$$q = 5.67 \epsilon_{\Pi P} \Psi ((T_1/100)^4 - (T_2/100)^4)$$

$$((T_1/100)^4 - (T_2/100)^4) = b (T_1 - T_2)$$

$$q = 5,67 \epsilon_{\Pi P} \psi b (\tau_1 - \tau_2) = \alpha_{\Pi} (\tau_1 - \tau_2)$$

$$b = 0.81 + 0.01 (T_1 + T_2)/2$$

Таблица 7

Значения температурного коэффициента в зависимости от средней температуры воздушной прослойки

Средняя тем- пература воз- душной про- слойки $\tau_1 + \tau_2$	+25°	+20°	+15°	+10°	+5	0°	-5°	-10°	—15°	-20°	-25°
Температур- ный коэффи- циент	1,06	1,01	0,96	0,91	0,86	0,81	0,77	0,73	0,69	0,65	0,61

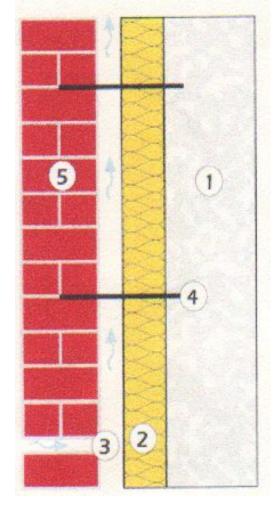
$$q = q_T + q_K + q_D = (\lambda_1 + \lambda_2 + \alpha_D \delta)(\tau_1 - \tau_2) / \delta$$

 $\lambda_{_{
m ЭКВ}} = \lambda_{_1} + \lambda_{_2} + \alpha_{_{
m Л}} \delta \, \, - \,$ эквивалентный коэффициент теплопроводности воздушной прослойки

$$R_{_{\rm B\, II}} = \delta / \lambda_{_{
m 3KB}}$$
 — термическое сопротивление воздушной прослойки

приложение 4

ТЕРМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ЗАМКНУТЫХ ВОЗДУШНЫХ ПРОСЛОЕК


William Park	Термическое сопротивление замкнутой воздушной прослойки $R_{\rm B,n}, {\rm M}^2 \cdot {\rm ^*C/BT}$							
Толщина воздушной прослойки.	горизонта.	льной при пла снизу этикальной	горизонта.	льнои при тепла				
м	при тем	пературе во	оздуха в пр	ослойке				
	положи- тельной	отрица- тельной	положи- тельной	отрица- тельной				
0.01	0,13	0.15	0,14	0,15				
0.02	0.14	0.15	0,15	0,19				
0.03	0,14	0,16	0,16	0,21				
0.05	0.14	0,17	0,17	0,22				
0,1	0,15	0,18	0,18	0,23				
0,15	0,15	0,18	0,19	0,24				
0.2-0.3	0.15	0,19	0,19	0,24				

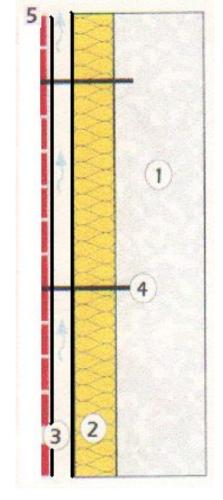
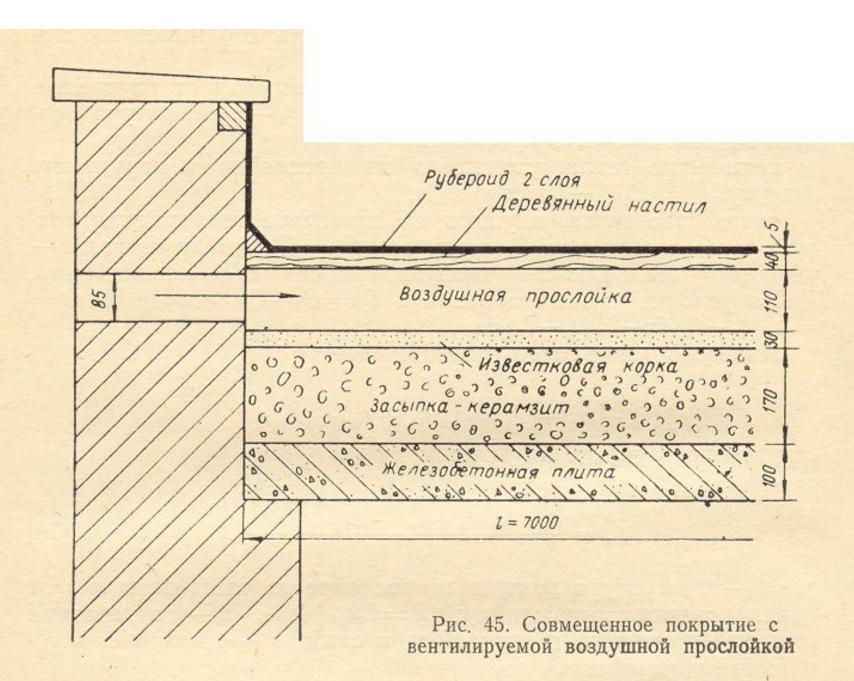

Примечание. При оклейке одной или обеих поверхностей воздушной прослойки алюминиевой фольгой терминеское сопротивление следует увеличивать в 2 раза.

Таблица 9 Количество тепла, проходящего через вертикальные воздушные прослойки, при разности температур на их поверхностях 5°


W	Количеств	Эквивалентный			
количество тепла Q, ккал/м²·ч	теплопровод- ностью	конвекцией	излучением	коэффициент теп- лопроводности λ _э ккал/м·ч·град	
26,5	38	2	60	0,053	
22,3	9	19	72	0,223	
21,3	5	20	75	0,426	
20,5	2	19	79	0,818	
	26,5 22,3 21,3	Количество тепла Q, ккал/м²·ч теплопровод- ностью 26,5 38 22,3 9 21,3 5	Количество тепла Q, ккал/м²·ч теплопровод- ностью конвекцией 26,5 38 2 22,3 9 19 21,3 5 20	тепла Q, ккал/м²·ч теплопровод- ностью конвекцией излучением 26,5 38 2 60 22,3 9 19 72 21,3 5 20 75	

Примечание. Приведенные в таблице величины соответствуют температуре воздуха в прослойке, равной 0° С, и коэффициентам излучения ее поверхностей C=4,4.

- 1 несущая стена (ж/б, кирпич)
- 2 утеплитель плитный с защитной дышащей пленкой
- 3 вентилируемая воздушная прослойка ~ 50 мм
- 4 связи или подоблицовочная конструкция
- 5 наружный облицовочный кирпич или фасадный лист

