M

Московский инженерно-физический институт (государственный университет) Физико-технический факультет

Лекция 15

Особенности метода Монте-Карло.
Физическая постановка задачи.
Генератор случайных чисел.
Алгоритм метода Монте-Карло в задачах переноса излучений.
Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов.

Особенности метода Монте-Карло

Метод Монте-Карло представляет собой численную процедуру, основывающуюся на статистическом подходе. Вообще говоря, этот метод не является методом решения уравнения переноса излучений. Метод Монте- Карло особенно полезен в особых случаях, например, при сложной геометрии, когда использование других методов затруднено. Кроме того, когда сечение сложным образом зависит от энергии, метод Монте-Карло устраняет необходимость проводить вспомогательные расчеты, например распределения потоков в резонансной области энергий. Метод может быть полезен также для определения групповых констант, требующихся в многогрупповых приближениях.

Физическая постановка задачи

Применимость метода Монте-Карло при расчете переноса нейтронов основывается на том, что макроскопическое сечение может быть интерпретировано как вероятность взаимодействия на единичном пути пробега нейтрона (гамма-кванта). В методе Монте-Карло генерируется ряд историй нейтронов, причем рассматривается их судьба в ходе последовательных столкновений. Место столкновений и их результат, т. е. направление и энергия появляющегося нейтрона (или нейтронов), определяются с учетом вероятностей с помощью случайных чисел.

Генератор случайных чисел

Случайные числа, необходимые для расчетов методом Монте-Карло, обычно генерируются вычислительной машиной, с помощью генератора случайных чисел. Генератор случайных чисел выбирает числа ξ_1 , ξ_2 , ξ_3 ... случайным образом из интервала $0 \le \xi_i \le 1$. Это означает, что вероятность $p(\xi_i)$ $d\xi_i$ для ξ_i оказаться между ξ_i и ξ_i + $d\xi_i$ есть $d\xi_i$, если $0 \le \xi_i \le 1$. Т.е. $p(\xi_i)$ = 1.

M

Алгоритм метода Монте-Карло в задачах переноса излучений

Первый шаг – выбор направления движения нейтрона. Для этого используются два первых случайных числа ξ_1 и ξ_2 . Азимутальный угол можно выбрать равным $\phi = 2$ ξ_1 , а косинус полярного угла $\mu = 2$ ξ_2 – 1.

Следующий шаг – нахождение места первого столкновения. Пусть сечение в выбранном направлении на расстоянии s от источника обозначено $\sigma(s)$. Тогда вероятность того, что нейтрон испытает столкновение между s и s + ds, равна:

$$P(s) ds = \sigma(s) \exp \left[-\frac{\sigma(s)}{2}\right] ds$$

Для нахождения s – места первого столкновения используется третье случайное число ξ_a :

третье случайное число
$$\xi_3$$
: In $\xi_3 = \sigma(s')$. $\int_0^s ds'$

Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов

При решении уравнения переноса методом Монте-Карло возникающие неточности связаны не с погрешностями метода, как это имеет место в многогрупповых приближениях, а с ограниченным числом рассматриваемых историй нейтронов. Разработаны методы, позволяющие свести к минимуму эти ошибки при данном объеме вычислительных работ.

Случайно может оказаться при рассмотрении истории замедляющегося нейтрона, что он поглощается уже в первом столкновении. Вместо того, чтобы прекратить рассмотрение, обычно имеет смысл продолжить его, но приписать этому нейтрону меньший вес, пропорциональный вероятности рассеяния при этом столкновении. В результате история нейтрона может быть прослежена до тех пор, пока приписанный ему таким образом вес не станет слишком малым или пока нейтрон не покинет систему.