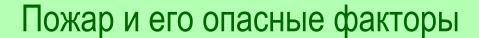


В Российской Федерации за один год в среднем происходит 250 тыс. пожаров, уничтожается ценностей на 44 млрд. руб., погибает свыше 18 тыс. человек и ещё большее количество людей получают травмы.

Пожар в здании Всемирного торгового центра в Нью-Йорке (2001 г.)

При проектировании был проведён расчёт на прочность от удара самолёта (Боинг-707, вес 150 т).


Каждая башня выдержала удар самолёта Боинг-767, который весил примерно на 30 т больше.


Пожар начался от разлива топлива из баков самолётов, которые были заполнены на 70 %.

Температура 1000...1200°С вызвала быстрый нагрев стальных элементов каркаса на этаже, потерю ими несущей способности и в результате - лавинообразное разрушение башен (соответственно через 103 и 62 минуты после удара).

Пожар – неконтролируемое горение, приводящее к ущербу.

На развитие пожара влияют следующие факторы:

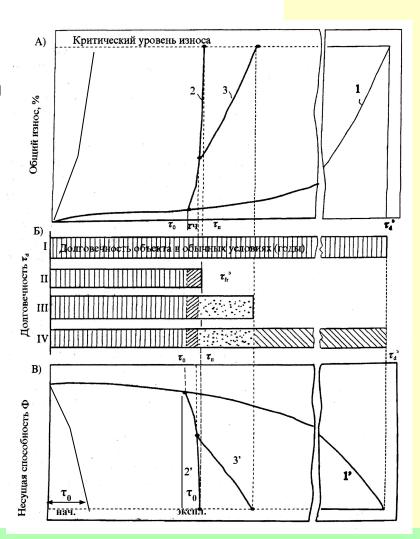
- пожарная (тепловая) нагрузка, то есть общее количество сгораемых материалов в помещении;
- воздухообмен (площадь помещения, площадь и количество проёмов);
- природа материала ограждающих и несущих конструкций.

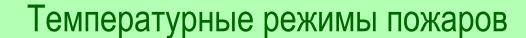
Опасные факторы пожара:

- высокая температура (до 1000-1500 °C);
- задымление;
- изменение состава газовой среды.

Долговечность и огнестойкость конструкций

Долговечность – способность конструкций сохранять эксплуатационные функции в течение заданного срока службы.

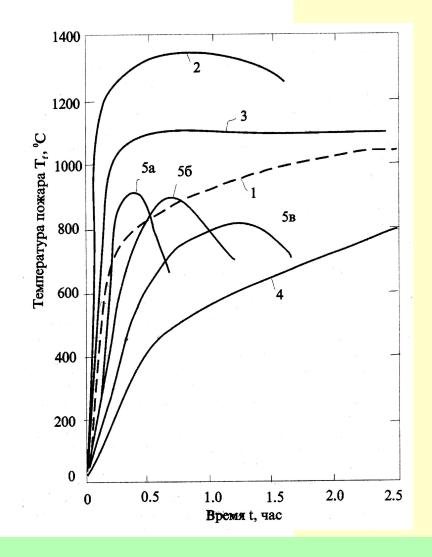

Огнестойкость – способность конструкции при пожаре сохранять несущие и (или) ограждающие функции при пожаре.

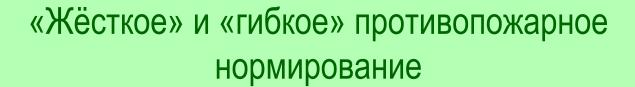

Характерна общность физических процессов утраты эксплуатационных качеств конструкциями. Основной фактор пожара – высокая температура интенсифицирует процессы утраты несущей способности вплоть до разрушения в течение десятков минут.

A – износ: 1 – обычные условия; 2 – полная утрата возможности эксплуатации; 3 – то же, частичная.

Б – долговечность: I – в обычных условиях; II-IV – при пожаре;

В – утрата прочности: 1' – в обычных условиях; 2'-3' – при пожаре.

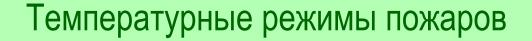



- стандартное огневое воздействие при определении предела огнестойкости конструкций;
- 2 режим пожара в тоннелях;
- 3 режим пожара в зданиях и сооружениях нефтеперерабатывающей промышленности;
- 4 режим пожара в подвальном помещении;
- 5 режим пожара в жилом помещении с различной площадью проёмов (5a) 2 M^2 ; (56) 1,5 M^2 ; (5в) 1,0 M^2 .

Стандартный температурный режим теплового воздействия на конструкцию

$$T = 345 \lg (8t + 1) + 20;$$

T – температура, °C; t – время, мин.

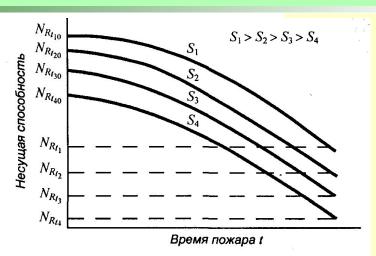


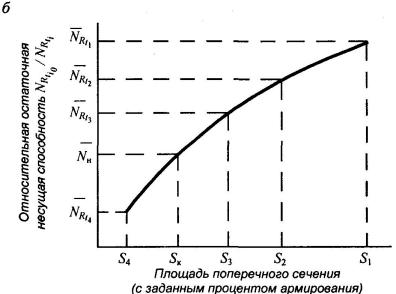
«Жёсткое» нормирование

• Предел огнестойкости конструкции определяется только по режиму стандартного воздействия, что не позволяет оптимизировать соотношение между степенью защиты и уровнем затрат на защиту;

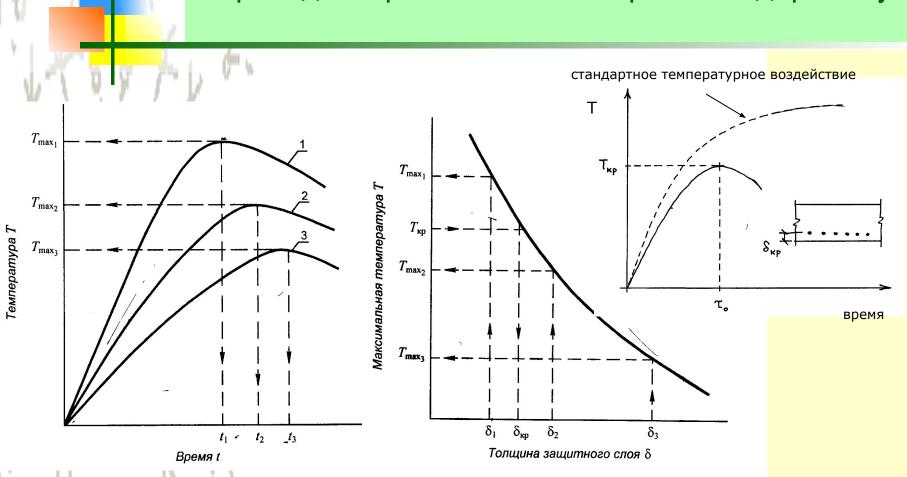
«Гибкое» нормирование (объектно-ориентированное)

- Предел огнестойкости определяется исходя из реального режима пожара, с учётом физико-химических и пожароопасных свойств материалов, а также конструктивных и объёмно-планировочных решений здания; требования огнестойкости соответствуют реальным условиям работы конструкций в конкретном здании;
- Учёт особенностей воздействия реального пожара позволяет проектировать конструкции с заданным уровнем безопасности при пожаре и заданной степенью сохранности эксплуатационных качеств (живучести) после пожара, оптимизировать затраты на обеспечение требуемой огнестойкости, а в некоторых случаях повысить уровень пожарной безопасности.

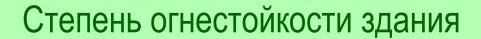

Определение эквивалентной продолжительности пожара по потере несущей способности конструкции


S_i – сечения конструкций с заданным процентом армирования

 $N_{_{\rm H}}$ – нормативная нагрузка;


 $N_{Rti0}^{}$ - начальное значение несущей способности;

 N_{Rti} - несущая способность при тепловом воздействии.



Переход от «реального» пожара к стандартному

1, 2, 3 – кривые прогрева защитных слоёв, соответственно толщиной $\delta_1;\delta_2;\ \delta_3;\ t$ – время прогрева слоёв до максимальных температур T_{max}

Степень огнестойкости здания

 согласно СНиП 21-01-97* определяется показателями огнестойкости и пожарной опасности конструкций;

Здесь заложено противоречие в определении степени огнестойкости для проектирования, так как её нормирование в зависимости от пожарнотехнических характеристик здания является первичным относительно пределов огнестойкости и классов пожарной опасности конструкций.

• согласно стандарту ИСО 383-87 нормируемая степень огнестойкости здания устанавливается в зависимости от назначения, количества этажей, площади пожарных отсеков, тепловой нагрузки и т.д.

Пределы огнестойкости конструкций

Таблица 4* С<mark>НиП 21-01-97*</mark>

ж		- Y	-						
J.	.1. \	Предел огнестойкости строительных конструкций, не менее			енее				
	Степень огнестойкости здания	Несущие элементы здания	Наружные ненесущие стены	Перекрытия междуэтажные	Элементы бесчердачных покрытий		Лестн <mark>ичные клетки</mark>		
1	1		1	(в том числе чердачные и над подвалами)	Настилы (в том числе с утеплителем)	Фермы, балки, прогоны	Внутренні стены	ие	Марши и площадки лестниц
	"I"") /	R 120	E 30	REI 60	RE 30	R 30	REI 120		R 60
	Й	R 45	E 15	REI 45	RE 15	R 15	REI 90		R 60
	Ш	R 45	E 15	REI 45	RE 15	R 15	REI 60		R 45
1	IV	R 15	E 15	REI 15	RE 15	R 15	REI 45		R 15
1	V	W A	не нормируется						

Класс пожарной опасности конструкций

Таблица 5* С<mark>НиП 21-01-97*</mark>

	, , , , , , , , , , , , , , , , , , ,					
1 0 10	Класс пожарной опасности строительных конструкций, не ниже					2
Класс	Несущие	Стены	Стены, перегород	Стены лестнич		Марши и
конструктивной	стержневые	наружные с	ки, перекрытия и	ных клеток и		площадки
пожарной	элементы	внешней	бесчердачные	противопожарны		лестниц в
опасности	(колонны,	стороны	покрытия	е преграды	J	пестничных
здания	ригели, фермы					клетках
' / / \	и др.)					
C0	К0	КО	К0	К0		КО
C1	К1	К2	K1	К0		КО
C2	К3	К3	К2	К1		К1
C3	СЗ Не нормируется		К1		КЗ	

При установлении класса пожарной опасности учитываются:

- наличие теплового эффекта от горения;
- наличие пламенного горения газов;
- размеры и характер повреждений;
- характеристики пожарной опасности материалов, составляющих конструкцию.

Следует различать понятия:

потеря огнестойкости СК- потеря способности конструкции сохранять свои функции при пожаре. Определяется временем от начала огневого воздействия «реального» пожара до момента потери огнестойкости;

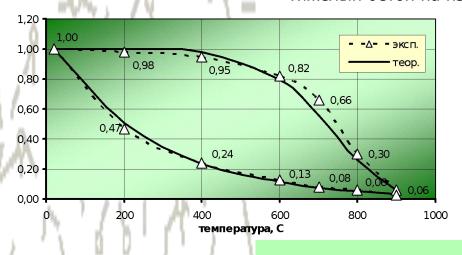
предел огнестойкости СК от начала огневого стандартного воздействия до возникновения предельного состояния – нормативная величина.

Основные факторы, определяющие огнестойкость железобетонных конструкций:

- вид бетона и его физико-механические характеристики, включая влажность;
- форма и размеры элементов;
- статическая схема;
- условия нагрева и тепловая нагрузка.

Аналитическая аппроксимация температурных зависимостей основных параметров диаграмм термомеханического состояния бетона

- Коэффициент снижения прочности бетона при нагреве:
- Коэффициент снижения начального модуля деформаций бетона при нагреве:


где $t_{b,i}$ – температура нагрева бетона; t_0 – начальная температура (t_0 = 20°C); γ , β , m, n – опытные параметры; 1000 – размерный коэффициент.


• Температурные деформации бетона:

где
$$\alpha, p, \varepsilon_{\alpha}$$
 – опытные параметры.

$$\begin{split} \gamma_{b,ti} &= \exp\left[-\gamma \cdot \left(\frac{t_{b,i} - t_0}{1\,000}\right)^m\right] \\ \beta_{b,ti} &= \exp\left[-\beta \cdot \left(\frac{t_{b,i} - t_0}{1\,000}\right)^n\right] \\ \epsilon_{b,ti}^{(tem)} &= \epsilon_\alpha \cdot \left(1 - \exp\left[-\alpha \cdot \left(\frac{t_{b,i} - t_0}{1\,000}\right)^p\right]\right) \end{split}$$

Тяжёлый бетон на известняковом заполнителе

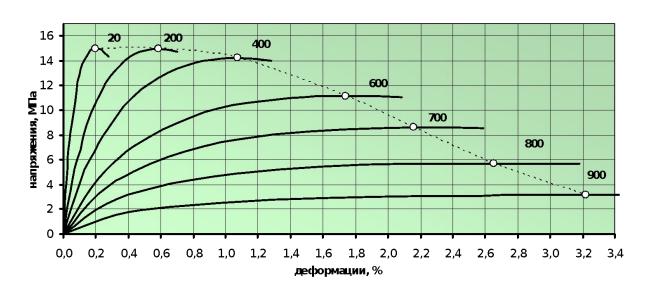


Диаграмма термомеханического состояния бетона

Диаграммы деформирования бетона при различных температурах нагрева, построенные по предлагаемой методике

(бетон тяжёлый класса B20 на гранитном заполнителе)

Предлагаемое выражение позволяет

- Использовать в расчёте непосредственно коэффициенты секущего модуля;
- ✓ Описывать единой зависимостью восходящую и нисходящую ветвь;
- Учитывать изменение характера нелинейности диаграмм при их трансформации без применения дополнительных опытных коэффициентов.

Функциональные зависимости для описания диаграмм деформирования бетона

- Уравнение связи между напряжениями и деформациями бетона:
- Функциональная зависимость для коэффициента секущего модуля:
- Уровень деформаций:
- Параметр нелинейности диаграммы $k_{_{\scriptscriptstyle f}}$ определяется из условия, что в вершине диаграммы коэффициент секущего модуля равен своему предельному значению:
- Показатель m определяется из условия, что угол наклона касательной в вершине диаграммы равен нулю:
- Тогда выражение для коэффициента секущего модуля:

Максимальный уровень деформаций:

лекущего модуля равен
$$k_{ti}$$
 нто угол наклона нулю: ущего модуля: $npu \quad \eta_{\epsilon,ti} < \eta_{\epsilon}^{(max)} : \quad \nu_{b,ti} = ext{pu}$ при $\eta_{\epsilon,ti} \geq \eta_{\epsilon}^{(max)} : \quad \nu_{b,ti} = 0$ При однородном

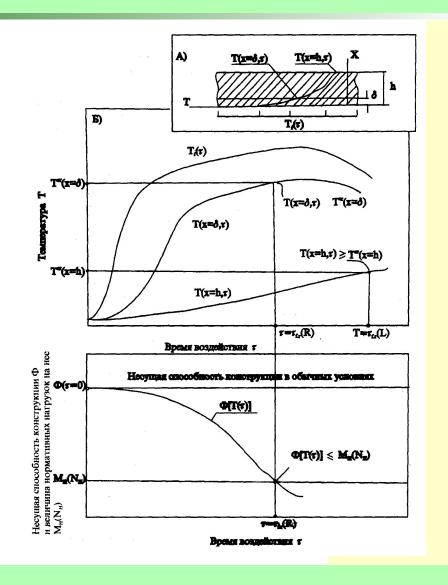
При неоднородном

жекущего модуля равен
$$k_{ti} = -\ln(v_{bu,ti})$$
 нто угол наклона инулю: $m = \frac{1}{k_{ti}}$ ущего модуля: $npu \quad \eta_{\epsilon,ti} < \eta_{\epsilon}^{(max)}$: $v_{b,ti} = \exp[-k_{ti} \left(\eta_{\epsilon,ti}\right)^{1/k_{ti}}]$ $npu \quad \eta_{\epsilon,ti} \geq \eta_{\epsilon}^{(max)}$: $v_{b,ti} = 0$ При однородном напряжённом состоянии: $\eta_{\epsilon}^{(max)} = 1,0$ При неоднородном напряжённом состоянии: $\eta_{\epsilon}^{(max)} = 1,8$

 $\sigma_{b,ti} = \varepsilon_{b,ti} \cdot E_{b,ti} \cdot v_{b,ti}$

 $v_{b,ti} = \exp[-k_{ti}(\eta_{\varepsilon,ti})^m]$

 $\eta_{\varepsilon,ti} = \frac{\varepsilon_{b,ti}}{\varepsilon_{bu,ti}}$


Огнестойкость железобетонных конструкций

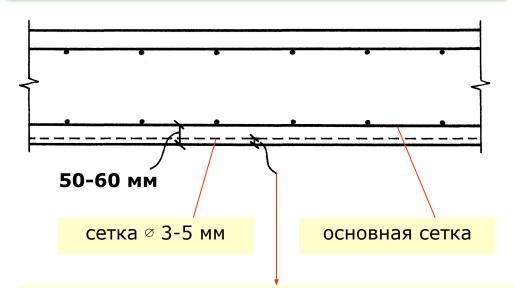
Предел овнестойкости изгибаемых и внецентренно сжатых железобетонных конструкций по несущей способности определяется нагревом рабочей растянутой арматуры до критической температуры.

Критическая температура – это температура, при которой её сопротивление снизится до величины напряжений от внешней нагрузки.

- Б решение теплотехнической задачи;
- В решение статической задачи.

Влияние размеров элемента и вида бетона

Характеристика конструкций	Размеры, см		<mark>Предел</mark> огнест <mark>ойкости, мин</mark>	
конструкции	из тяжёлого бетона	из лёгкого бетона (1200 кг/м³)	orneer	onicern, mini
Плиты, опёртые по двум сторонам при толщине защитного слоя а	a = 15 a = 35 a = 60 a = 70	a = 10 a = 30 a = 50 a = 55		R30 R90 R150 R180
Колонны шириной b и толщиной защитного слоя а при воздействии огня со всех сторон	b = 150; a = 10 b = 240; a = 35 b = 400; a = 50 b = 450; a = 50	b = 150; a = 10 b = 190; a = 35 b = 320; a = 40 b = 360; a = 40		R30 R90 R150 R180


Для несущих конструкций высотных зданий установлен предел огнестойкости R240 (4 часа)

Поперечный разрез плиты перекрытия

15-20 мм для предохранения от образования и развития начальных трещин при изготовлении;

25-40 мм (противооткольная сетка).

Это требует специальных исследований по величине расположения сетки.

Огнестойкость статически неопределимых железобетонных конструкций

Предел огнестойкости статически неопределимых конструкций выше, чем у статически определимых.

Отношение площади арматуры над	Увеличение предела <mark>огнестойкости</mark>
опорой к площади арматуры в	изгибаемого ст <mark>атически</mark>
пролёте	неопределимого эл <mark>емента, %, по</mark>
	сравнению с п <mark>ределом</mark>
	огнестойкости с <mark>татически</mark>
	определимого <mark>элемента</mark>
0,25	10
0,5	25
1	50
2	150

При тепловом воздействии изменяются жёсткостные характеристики сечений элементов, что приводит к перераспределению усилий от нагрузки

Общие гипотезы

Статические

Элемент может испытывать растяжение (или сжатие) от действия продольной силы *N* и изгиб от действия момента *M*. На всех стадиях работы элемент находится в состоянии равновесия.

Основные соотношения:

 $N = \sum_{i} \sigma_{b,ti} A_{b,i} + \sum_{j} \sigma_{s,tj} A_{s,j}$ $M = \sum_{i} \sigma_{b,ti} y_{b,i} A_{b,i} + \sum_{i} \sigma_{s,tj} y_{s,j} A_{s,j}$

Геометрические

Физические

В качестве закона, определяющего совместность деформаций компонентов сечения, используем гипотезу плоских сечений.

 $\varepsilon_{b,ti}^{(tot)} = \varepsilon_t + \chi_t \cdot y_{b,i}$ $\varepsilon_{s,tj}^{(tot)} = \varepsilon_t + \chi_t \cdot y_{s,j}$

Связь между напряжениями и деформациями для каждого компонента сечения остаётся такой же, как и при стандартных испытаниях эталонных образцов.

$$\sigma_{b,ti} = \varepsilon_{b,ti} E_{b,ti} v_{b,ti}$$
$$\sigma_{s,tj} = \varepsilon_{s,tj} E_{s} v_{s,tj}$$

Специфическая гипотеза Полные деформации компонентов сечения, определяемые гипотезой плоских сечений, равны сумме силовых и температурных деформаций, которые считаются независимыми.

$$\begin{split} \varepsilon_{b,ti}^{(tot)} &= \varepsilon_{b,ti} + \varepsilon_{b,ti}^{(tem)} \\ \varepsilon_{s,tj}^{(tot)} &= \varepsilon_{s,tj} + \varepsilon_{s,tj}^{(tem)} \end{split}$$

Разрешающая система уравнений для определения напряжённо-деформированного состояния неравномерно нагретого железобетонного элемента

- Разрешающая система уравнений:
- В более компактном виде:

где

 $\{F\}$ – вектор внешних сил;

[D] – матрица жёсткости элемента;

 $\{u\}$ – вектор обобщённых деформаций элемента:

 $\varepsilon_{_{\scriptscriptstyle f}}$ – линейная деформация,

 χ_{t} – угловая деформация;

 $\{ {\it {\it B}} \}$ – вектор температурных усилий.

 Осевая B_t и изгибная D_t жёсткости элемента определяются как отношение действующего усилия к соответствующим силовым деформациям:

$$\begin{cases} N \\ M \end{cases} = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_t \\ \chi_t \end{bmatrix} - \begin{bmatrix} B_{1t} \\ B_{2t} \end{bmatrix}$$

$${F} = [D] \cdot {u} - {B}$$

$$D_{11} = \sum_{i} E_{b,ti} \mathbf{v}_{b,ti} A_{b,i} + \sum_{j} E_{s} \mathbf{v}_{s,tj} A_{s,j};$$

$$D_{12} = D_{21} = \sum_{i} E_{b,ti} v_{b,ti} A_{b,i} y_{b,i} + \sum_{i} E_{s} v_{s,tj} A_{s,j} y_{s,j};$$

$$D_{22} = \sum_{i} E_{b,ti} \mathbf{v}_{b,ti} A_{b,i} y_{b,i}^{2} + \sum_{j} E_{s} \mathbf{v}_{s,tj} A_{s,j} y_{s,j}^{2};$$

$$B_{1t} = \sum_{i} E_{b,ti} \mathbf{v}_{b,ti} A_{b,i} \mathbf{\varepsilon}_{b,ti}^{(tem)} + \sum_{j} E_{s} \mathbf{v}_{s,tj} A_{s,j} \mathbf{\varepsilon}_{s,tj}^{(tem)};$$

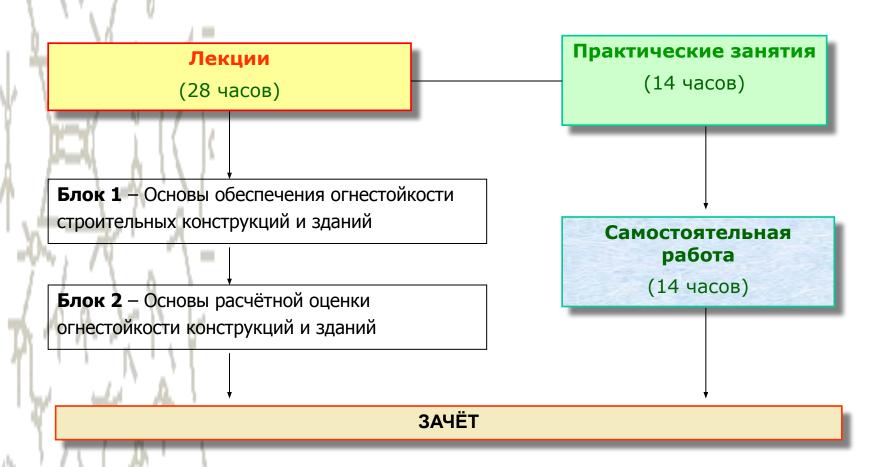
$$B_{2t} = \sum_{i} E_{b,ti} \mathbf{v}_{b,ti} A_{b,i} y_{b,i} \mathbf{\varepsilon}_{b,ti}^{(tem)} + \sum_{j} E_{s} \mathbf{v}_{s,tj} A_{s,j} y_{s,j} \mathbf{\varepsilon}_{s,tj}^{(tem)}.$$

$$D_t = \frac{M}{\chi_{t,f}}; \qquad B_t = \frac{N}{\varepsilon_{t,f}}$$

Алгоритм расчётной оценки огнестойкости железобетонных конструкций

Предел огнестойкости несущих металлических конструкций зависит от величины теплозащиты и от приведённой толщины металла $\delta_{np} = A/U$.

Характеристика конструкций	Размеры, см	П <mark>редел</mark> огнесто <mark>йкости, мин</mark>
Стальные балки и колонны без огнезащиты с приведённой толщиной металла t _{red}	$t_{red} = 0.5$ $t_{red} = 1.5$ $t_{red} = 3.0$	R9 R18 R27
Стальные балки перекрытий при огнезащите по сетке слоем бетона толщиной а	a = 1 a = 2 a = 3	R45 R90 R150


Известково-цементная штукатурка толщ. 15 мм

Гипсовая штукатурка толщ. 10 мм

Вермикулитовая штукатурка и минеральное волокно толщ. 10 мм

_Эквивалентны <mark>10 мм</mark> защитного слоя бетона

Структура курса «Огнестойкость строительных конструкций»

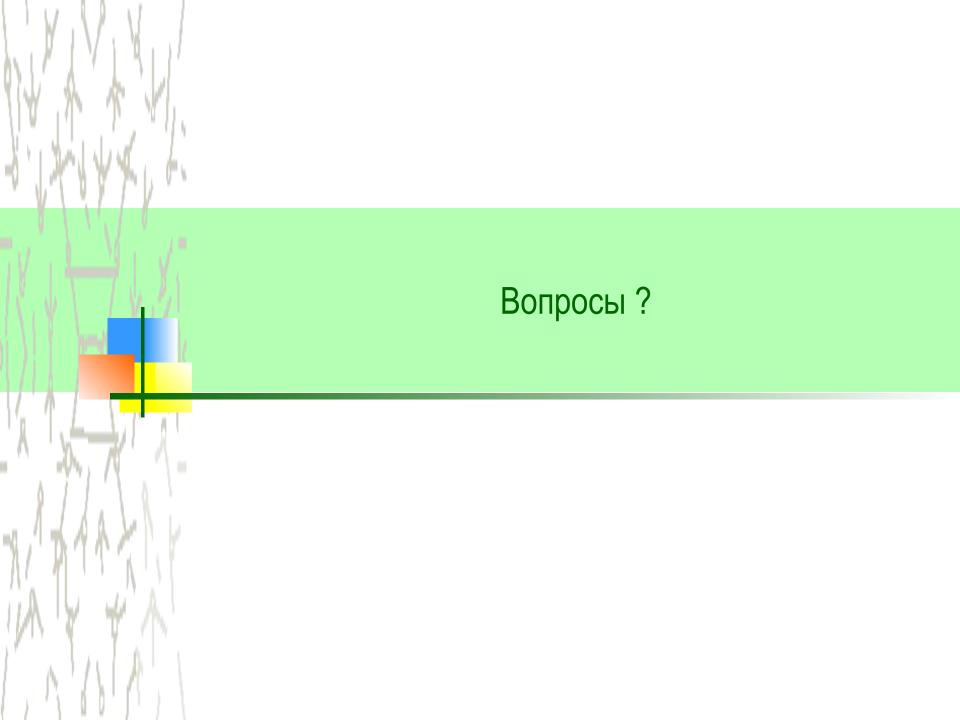
Тематическое содержание лекционного курса: Блок 1 – Основы обеспечения огнестойкости строительных конструкций и зданий

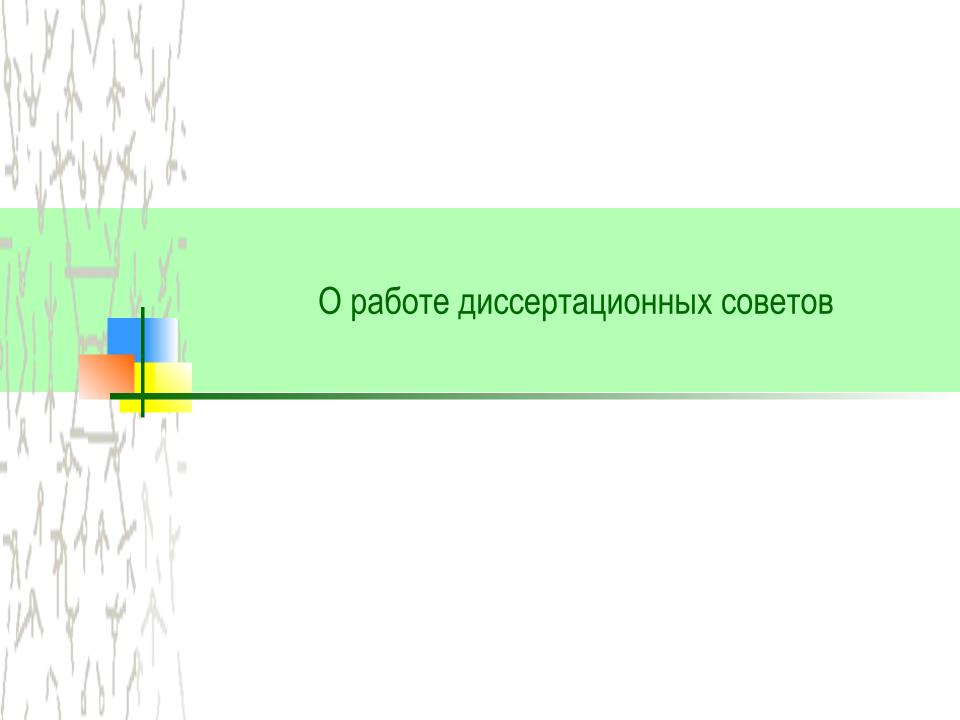
- Понятие о пожарной опасности и пожарной безопасности зданий
- Последствия воздействия пожаров на здания
- Температурные режимы пожаров
- Понятие об огнестойкости строительных конструкций и зданий
- Огнестойкость строительных конструкций как базовый элемент противопожарной защиты строительных объектов
- Технические, экономические и социально-психологические аспекты проблемы обеспечения огнестойкости строительных конструкций
- Экспериментальная и расчётная оценка огнестойкости конструкций
- Факторы, определяющие поведение строительных конструкций при пожаре
- Экспериментальные данные об огнестойкости железобетонных, каменных, металлических и деревянных конструкций
- Влияние совместной работы конструкций в составе несущей системы здания на их огнестойкость

Тематическое содержание лекционного курса: Блок 2 – Основы расчётной оценки огнестойкости конструкций и зданий

- Теплотехническая и статическая задачи расчёта огнестойкости
- Основы расчёта температурного режима пожара в помещении
- Основы расчёта температурных полей в сечениях конструкций при пожаре
- Влияние высокой температуры на физико-механические свойства бетона, строительной стали и древесины
- Статический и кинетический подходы к оценке влияния высокой температуры прочностные и деформативные свойства материалов
- Основы расчёта огнестойкости железобетонных, металлических и деревянных конструкций
- Расчётная оценка огнестойкости проектируемых зданий
- Особенности расчётной оценки эксплуатируемых и реконструируемых зданий
- Основы расчётной оценки сохранности железобетонных конструкций после пожара

Тематика практических занятий


- Определение требуемой степени огнестойкости здания и требуемых пределов огнестойкости основных несущих конструкций 2 ч.
- Расчёт температурных полей в сечениях типовых железобетонных конструкций при пожаре (теплотехническая задача). Определение критических температур нагрева арматуры. Расчёт толщины слоя бетона, прогретого до критической температуры 2 ч.
- Расчётная оценка огнестойкости железобетонных плит и колонн на основе прочностных и деформационных критериев (статическая задача). Метод критических температур, метод приведённого сечения, метод критических деформаций, диаграммный метод 6 ч.
- Расчёт огнестойкости стальных и деревянных конструкций 4 ч.


Всего: 14 ч.

- Оценка огнестойкости строительных конструкций с учётом реального режима воздействия пожара
- Преимущества и перспективы объектно-ориентированной оценки огнестойкости конструкций и зданий
- Причины и закономерности изменения физико-механических свойств материалов при нагреве
- Конструктивные мероприятия, способствующие повышению огнестойкости строительных конструкций
- Прочность и деформативность железобетонных конструкций, повреждённых пожаром
- Методы решения теплотехнической задачи расчёта огнестойкости железобетонных конструкций
- Методы и средства огнезащиты металлических конструкций

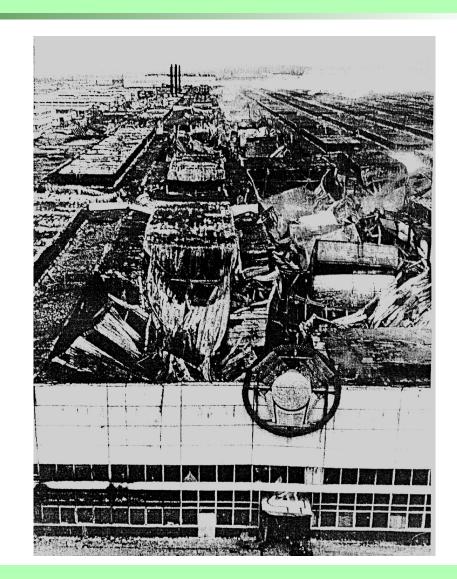
Рекомендуемая литература

- **СНиП 21-01-97*.** Пожарная безопасность зданий и сооружений. Нормы проектирования / Госстрой России. М.: ГУП ЦПП, 2001.
- **ГОСТ 30247-94.** Конструкции строительные. Методы испытаний на огнестойкость. Взамен СТ СЭВ 1000-78; Введ. 01.01.96.
- МДС 21.2-2000. Методические рекомендации по расчёту огнестойкости и огнесохранности железобетонных конструкций. Второе издание. − М.: ГУП НИИЖБ, 2000. − 92 с.
- Фёдоров В.С. Основы обеспечения пожарной безопасности зданий. М.: Изд-во АСВ, 2004. 176 с.
- **Ройтман В.М.** Инженерные решения по оценке огнестойкости проектируемых и реконструируемых зданий. М.: Асс. «Пожарная безопасность и наука», 2001. 382 с.
- Огнестойкость строительных конструкций / И.Л. Мосалков, Г.Ф. Плюснина, А.Ю. Фролов М.: Спецтехника, 2001. 496с.
- Яковлев А.И. Расчёт огнестойкости строительных конструкций. М.: Стройиздат, 1988.
 − 143 с.
- **Милованов А.Ф.** Стойкость железобетонных конструкций при пожаре. М.: Стройиздат, 1998. 304 с.

О работе диссертационных советов

- Все действующие диссертационные советы работают до 15 ноября 2007 г.
- Новая сеть диссертационных советов призвана сократить их количество.
- Предпочтение отдаётся объединённым советам.

Основные ошибки и замечания по аттестационным делам, направляемым в ВАК:


- Содержание работы, научная новизна не соответствуют заявленной специальности;
- Заключение диссертационных советов не соответствует требованиям
 Положения ВАК по присуждению учёной степени доктора наук;
- Отсутствие или недостаточность публикаций в изданиях, рекомендованных в Перечне ВАК;
- Небрежность оформления документов: несоответствие в комплектах; в документах по-разному указываются место работы, должность, наличие и количество научных трудов; разные формулировки в научной новизне.

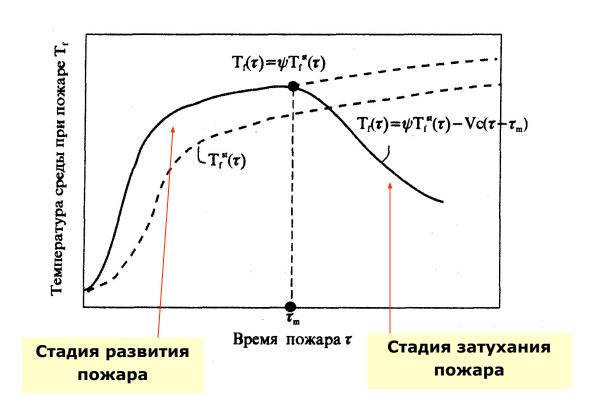
Пожар на заводе двигателей КАМАЗ (1993 г.)

Пожар возник в результате возгорания на понизительной подстанции, встроенной в корпус здания завода двигателей.

Распространение огня происходило по кабельной трассе, расположенной в межферменном пространстве, и в течение 15-20 минут огнём были охвачены значительные площади покрытия. Пожарную нагрузку создавало горение силовых фидеров, содержащих такие материалы, как резина, битум, масло и пластмассу, а также полимерного утеплителя и битумной мастики кровли, которые расплавляясь, проливались с потолка в цех. Огонь распространялся по полу корпуса и попадал в тоннели подвала, где были расположены ёмкости с отработанным машинным маслом и охладительной жидкостью общим объёмом около 2000 м³.

Пожар в надземной части корпуса был ликвидирован в течение 15 часов. Горение машинных масел в подземных тоннелях продолжалось до 19 апреля.

Температурный режим «реального» пожара



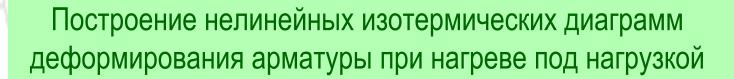
 au_m – время начала фазы затухания пожара;

 ψ - коэффициент условий пожара;

$$\psi = \frac{T_f(\tau)}{T_f^{st}(\tau)};$$

 V_c – скорость снижения температуры среды в фазе затухания реального пожара.

Температурный режим «реального» пожара может быть получен преобразованием «стандартного» пожара с помощью параметров $\tau_{_m}$, ψ , $V_{_c}$.


Построение изотермических диаграмм деформирования бетона при нагреве под нагрузкой


- 1 Кривая снижения прочности бетона
- 2 Кривая снижения начального модуля деформаций
- 3 Кривые развития силовых деформаций
- 4 Кривая предельных силовых деформаций
- 5 Кривая максимальнограничного состояния
- 6 Изотермические диаграммы деформирования

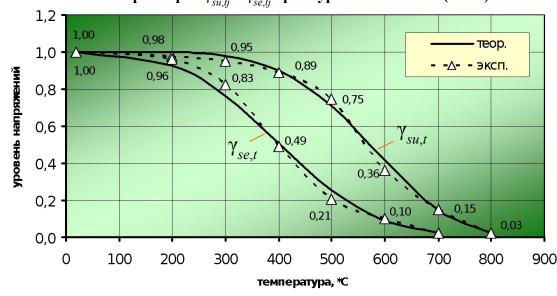
Бетон тяжёлый на гранитном заполнителе

(опытные данные ВНИИПО)

Арматура класса A400 (A-III)

(опытные данные ВНИИПО)

Температурные зависимости основных механических характеристик арматуры

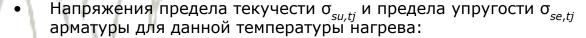

 Температурные зависимости коэффициентов снижения предела упругости γ_{se,tj} и предела текучести γ_{su,tj} арматуры при нагреве:

$$\gamma_{su,tj} = \exp\left[-\omega_u \cdot \left(\frac{t_{s,j} - t_0}{1000}\right)^c\right]$$

$$\gamma_{se,tj} = \exp\left[-\omega_e \cdot \left(\frac{t_{s,j} - t_0}{1000}\right)^d\right]$$

где $t_{s,j}$ – температура нагрева арматуры; ω_u , ω_e , c, d – опытные параметры; 1000 – размерный коэффициент.

Аналитическая аппроксимация температурных зависимостей параметров $\gamma_{su,tj}$ и $\gamma_{se,tj}$ арматуры класса A400 (A-III)



Основные температурные параметры арматуры класса A400 (A-III)

Температурные	Характеристики изменения предела	c	5
параметры	текучести	ω_{u}	13,25
	Характеристики изменения предела	ď	3
	упругости	ω _a	12,42
	Деформации начала стадии текучести	ε _{su.t} , %	1,25
	Коэффициент температурного расширения	$\alpha_{s.t}^{\text{sa,i}}1/^{\circ}\text{C}$	15·10 ⁻⁶

9

Аналитическое описание диаграмм деформирования арматуры при нагреве

где $\sigma_{su,0}$, $\sigma_{se,0}$ – предел текучести и предел упругости арматуры до нагрева.

- Деформации $\varepsilon_{se,tj'}$ соответствующие напряжениям предела упругости:
- Деформации $\varepsilon_{su,t}$, соответствующие началу стадии текучести арматуры, принимаются не зависящими от температуры нагрева (например, для арматуры класса A-III $\varepsilon_{su,t} = 1,25\%$).
- Предельный локальный коэффициент секущего модуля на нелинейном участке диаграммы $v_{\Lambda SUIT}$:
- Параметр нелинейности деформирования $k_{\Delta s,ti}$:
- Температурные деформации арматуры:

где $\alpha_{s,t}$ – коэффициент температурного расширения

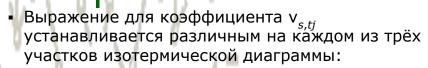
• Уравнение связи напряжений и деформаций арматуры при нагреве:

где $v_{s,tj}$ – коэффициент изменения секущего модуля деформаций.

$$\sigma_{su,tj} = \sigma_{su,0} \cdot \gamma_{su,tj}$$

$$\sigma_{se,tj} = \sigma_{se,0} \cdot \gamma_{se,tj}$$

$$\varepsilon_{se,tj} = \sigma_{se,0} / E_s$$


$$v_{\Delta su,tj} = \frac{\sigma_{su,tj} - \sigma_{se,tj}}{E_s \cdot (\varepsilon_{su,t} - \varepsilon_{se,tj})}$$

$$k_{\Delta s,tj} = -\ln(\mathbf{v}_{\Delta su,tj})$$

$$\varepsilon_{s,tj}^{(tem)} = \alpha_{s,t} \cdot (t_{s,j} - t_0)$$

$$\sigma_{s,tj} = \varepsilon_{s,tj} \cdot E_s \cdot v_{s,tj}$$

Диаграмма термомеханического состояния арматуры

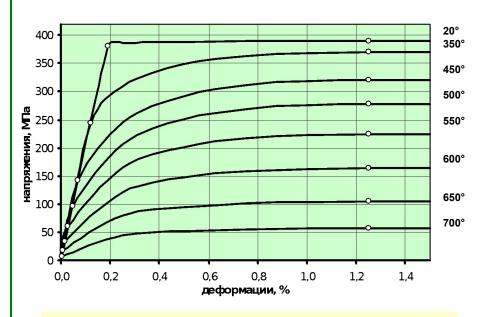
- B стадии линейно-упругой работы $(\varepsilon_{s,tj} \leq \varepsilon_{se,tj})$ принимается $v_{s,tj} = 1$, тогда $\sigma_{s,tj} = \varepsilon_{s,tj} \cdot E_s$.
- B cmaduu meкучести $(\varepsilon_{s,tj} \ge \varepsilon_{su,t})$ принимается

$$\mathbf{v}_{s,tj} = \frac{\mathbf{\sigma}_{su,tj}}{E_s \; \mathbf{\epsilon}_{s,tj}}$$
 тогда $\mathbf{\sigma}_{s,tj} = \mathbf{\sigma}_{su,tj}$

(неограниченный горизонтальный участок).

■ B стадии нелинейной работы ($\varepsilon_{se,tj} < \varepsilon_{s,tj} < \varepsilon_{su,t}$):

$$v_{s,tj} = \frac{\varepsilon_{se,tj}}{\varepsilon_{s,tj}} \cdot (1 - v_{\Delta s,tj}) + v_{\Delta s,tj}$$


$$v_{\Delta s,tj} = \exp\left[-k_{\Delta s,tj} \cdot (\eta_{\Delta \varepsilon,tj})^{1/k_{\Delta s,tj}}\right]$$

$$\eta_{\Delta \varepsilon, tj} = \frac{\varepsilon_{s,tj} - \varepsilon_{se,tj}}{\varepsilon_{se,tj}}$$

где $\eta_{\Delta\epsilon,ij}$ — уровень прирафения деформаций арматуры по отношению к деформациям предела упругости; $\nu_{\Delta s,ij}$ — локальный коэффициент секущего модуля на нелинейном участке.

Диаграммы деформирования арматуры при различных температурах нагрева, построенные по предлагаемой методике

арматура класса A400 (A-III)

 Разработанная методика позволяет единообразно описывать связь напряжений и деформаций арматуры любых классов как при нагреве, так и при нормальной температуре