Технологический колледж сервиса

- Государственное образовательное учреждение высшего профессионального образования
- Южно-Уральский Государственный Университет
 - Конденсатор
- Технологический колледж сервиса ГОУ ВПО «ЮУрГУ»
- Автор: Политова Юлия Владимировна
- Научный руководитель: Костюк Виктор Сергеевич, преподаватель физики высшей категории.

г. Челябинск 2009/2010 учебный год

Исследовательская работа

Конденсатор

Автор: Политова Юлия Владимировна

ЦЕЛЬ:

- 1) исследовать зависимость электроемкости плоского конденсатора от площади пластин,
- 2) исследовать зависимость электроемкости плоского конденсатора от наличия диэлектрика,
- 3) исследовать зависимость электроемкости плоского конденсатора от расстояния между пластинами конденсатора.

план исследования:

- Изучить литературу по теме: конденсатор, электроемкость конденсатора.
- Теоретическое обоснование темы.
- Назначение и правила пользования приборами.
- Изучение устройства и принципа действия
- а) электроскопа,
- б) плоского конденсатора.
- Повторение основных положений техники безопасности.
- Выполнение исследовательской работы по плану.
- Обсуждение результатов эксперимента.
- Подведение итогов работы.
- Ознакомление с различными типами конденсаторов.
- Оформление отчета по исследовательской работе.

ЦЕЛИ ИССЛЕДОВАНИЯ:

- Развить интерес к исследовательской деятельности.
- Закрепить знания, приобретенные на уроках физики.
- Продолжить формирование навыков проводить физический эксперимент.
- Научить использовать результаты исследований в повседневной деятельности.
- Продолжить формирование коммуникативных навыков работы в группах.
- Сформировать навыки соблюдения основных положений техники безопасности при работе с электрическими приборами.

ПРИБОРЫ И МАТЕРИАЛЫ:

- Электроскоп из набора по электростатике.
- Пластины разборного конденсатора.
- Диэлектрические пластины (плексиглас, эбонит, стекло).
- Штатив с муфтой и лапкой.
- Соединительные провода.
- Линейка из органического стекла (плексигласа).
- Шелковая ткань.

ДИСКИ КОНДЕНСАТОРА

ЭЛЕКТРОСКОП

ЭБОНИТОВАЯ ПЛАСТИНА

УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ

КРАТКАЯ ТЕОРИЯ.

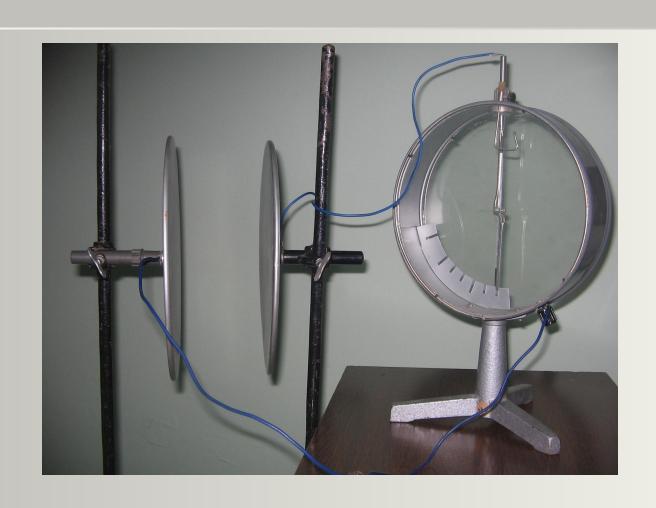
- Взаимной элекроемкостью двух проводников называется физическая величина, численно равная заряду q, который необходимо перенести с одного проводника на другой для того, чтобы изменить на единицу разность потенциалов
- между ними: ,

- С электроемкость плоского конденсатора,

- φ_1^- потенциал нижней пластины конденсатора, φ_2^- потенциал верхней пластины конденсатора, U_2^- напряжение между пластинами (обкладками) конденсатора,

$$C = \frac{q}{U}$$

- U разность потенциалов (напряжение между пластинами),
- Плоский конденсатор представляет собой две параллельные плоские пластины (обкладки), заряженные одинаковыми по абсолютному значению, но разноименными зарядами. Пластины (обкладки) конденсатора имеют площадь S, находятся на расстоянии d друг от друга. Между обкладками конденсатора расположен диэлектрик (воздух, органическое стекло, эбонит) с относительной диэлектрической проницаемостью.


Порядок выполнения исследования

- Подготовительный этап.
- Подготовить экспериментальную установку к проведению исследовательской деятельности:
- 1) поставить электроскоп в центре лабораторного стола,
- 2) первый диск укрепить на центральном стержне электрометра,
- 3) второй диск прикрепить к лапке штатива,
- 4) корпус электрометра соединить проводом со вторым диском и заземлить.
- 5) расположить диски на расстоянии 5 сантиметров так, чтобы их центры были на одной прямой, проведенной через ось стержня электрометра.
- 6) получить разрешение преподавателя на проведение опытов.
- Основной этап.
- 1) Ослабить зажим лапки штатива так, чтобы можно было без больших усилий опускать (поднимать) второй диск конденсатора.
- 2) Взять в руку линейку, осуществить электризацию путем трения шелковой ткани об оргстекло.
- Зарядить нижнюю пластинку конденсатора, прикоснувшись к стержню электроскопа наэлектризованной линейкой. Верхняя пластинка приобретет электрический заряд равный по величине, но противоположный по знаку. Конденсатор заряжен. Установка готова для проведения опытов.

Опыт № 1.

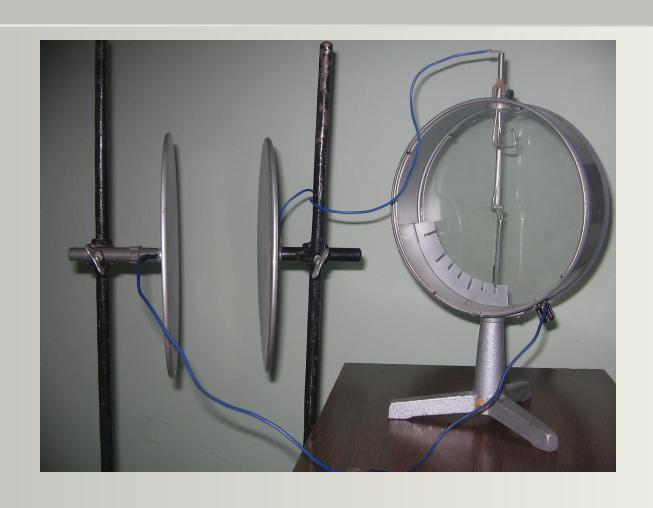
- 1) Уменьшаем расстояние d между пластинами конденсатора, медленно приближая верхний диск к нижнему диску.
- 2) Наблюдаем за показаниями стрелки электрометра, как изменяется напряжение U (увеличивается или уменьшается),
- 3) Записываем в таблицу № 1 результат наблюдения.
- 4) Используя формулу, $C = \frac{q}{U}$ записываем вывод о том, что происходит с электроемкостью конденсатора C (увеличивается или уменьшается).

ОПЫТ №1

УМЕНЬШАЕМ РАССТОЯНИЕ

Таблица №1

d расстояние между пластинами	<i>U</i> напряжение	электроемкость $C = \frac{q}{U}$	Вывод: какая существует зависимость между электроемкостью С и расстоянием d
уменьшается			
увеличивается			


Опыт № 2.

- 1) Увеличиваем расстояние d между пластинами конденсатора, медленно поднимая верхний диск.
- 2) Наблюдаем за показаниями стрелки электрометра, как изменяется напряжение U (увеличивается или уменьшается).
- 3) записываем в таблицу № 1 результат наблюдения.
- 4) Используя формулу, записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).
- 5) Анализируя результаты опытов и наблюдений, записываем в таблицу № 1 вывод о том, какая зависимость существует между электроемкостью конденсатора С и расстоянием d (прямая пропорциональная зависимость или обратная пропорциональная зависимость).

ОПЫТ №2

РАЗДВИГАЕМ ПЛАСТИНЫ

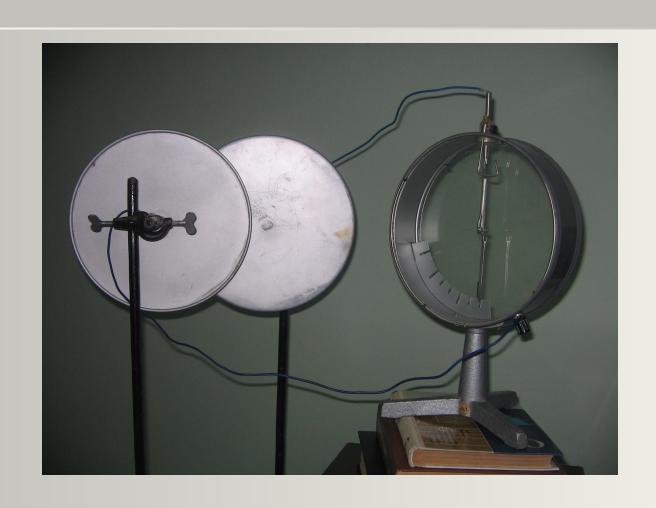
<u>Опыт № 3.</u>

- 1) Устанавливаем расстояние *d* между пластинами конденсатора *d* 5 миллиметров.
- 2) Замечаем положение стрелки электрометра.
- 3) Осторожно вводим эбонитовую пластинку (диэлектрик) между обкладками конденсатора.
- 4) Отмечаем новое положение стрелки электрометра.
- 5) Записываем в таблицу № 2, как изменилось напряжение U (увеличивается или уменьшается).
- 6) Используя формулу, записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).
- 7) Вынимаем из конденсатора эбонитовую пластинку, возвращаем на прежнее место.

ОПЫТ №3

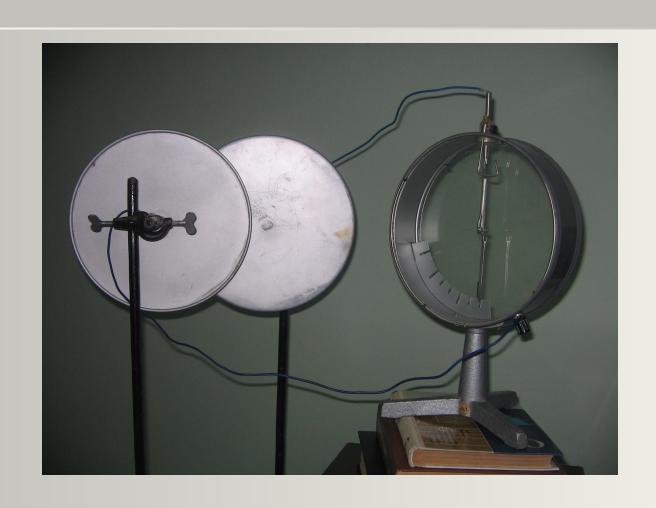

Таблица №3

диэлектрическая проницаемость среды Е	<i>U</i> напряжение	электроемкость $C = rac{q}{U}$	Вывод: какая существует зависимость между электроемкостью С и диэлектрической проницаемостью среды
уменьшается			
увеличивается			


Опыт №4.

- 1) Расстояние между обкладками конденсатора остается без изменения. (Расстояние между пластинами конденсатора d=2 сантиметра).
- 2) Замечаем положение стрелки электрометра.
- З) Наблюдая за показаниями стрелки электрометра, сдвигаем верхнюю обкладку конденсатора, уменьшая площадь взаимного перекрытия пластин.
- 4) Замечаем новое положение стрелки электрометра.
- 5) Записываем в таблицу № 3, как изменяется напряжение U (увеличивается или уменьшается)
- 6) Используя формулу, записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).
- 7) Анализируя результаты опытов и наблюдений, записываем вывод о том, какая зависимость существует между электроемкостью конденсатора С и величиной площади S (обратная пропорциональная зависимость или прямая пропорциональная зависимость).

Опыт №4


УМЕНЬШАЕМ ПЛОЩАДЬ

<u>Опыт № 5.</u>

- 1) Расстояние между обкладками конденсатора остается без изменения. (Расстояние между пластинами конденсатора d=2 сантиметра).
- 2) Замечаем положение стрелки электрометра.
- З) Наблюдая за показаниями стрелки электрометра, сдвигаем верхнюю обкладку конденсатора, увеличивая площадь взаимного перекрытия пластин.
- 4) Замечаем новое положение стрелки электрометра.
- 5) Записываем в таблицу № 3, как изменяется напряжение U (увеличивается или уменьшается)
- 6) Используя формулу, записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).
- 7) Анализируя результаты опытов и наблюдений, записываем вывод о том, какая зависимость существует между электроемкостью конденсатора С и площадью взаимного перекрытия пластин S (обратная пропорциональная зависимость или прямая пропорциональная зависимость).

Опыт №5

УВЕЛИЧИВАЕМ ПЛОЩАДЬ

Таблица №4

S — площадь взаимного перекрытия пластин	<i>U</i> напряжение	электроемкость $C = \frac{q}{U}$	Вывод: какая существует зависимость между электроемкостью С и площадью пластин S
уменьшается			
увеличивается			

Результаты исследования.

- Студенты обсуждают результаты своих исследований, выдвигают гипотезы, высказывают свои мысли и приходят к обобщенному выводу: какая связь существует между электроемкостью С и параметрами плоского конденсатора такими как
- площадь пластин *S*,
- относительная диэлектрическая проницаемость,
- расстояние между обкладками конденсатора d.
- Они записывают свой вывод, используя символические обозначения *C, S, e, d.*
- Преподаватель предлагает исследователям записать формулу плоского конденсатора, используя электрическую постоянную (значение электрической постоянной извлекают из справочника).

Практическое применение исследования.

- Применить полученную формулу для расчета электроемкости плоского конденсатора, используемого в этом эксперименте (начертить таблицу, самостоятельно измерить параметры конденсатора, выписать из справочника значение относительной диэлектрической проницаемости эбонита, расчеты произвести в международной системе СИ, заполнить таблицу). Студенты оформляют работу в электронном варианте и записывают на лазерный диск.
- *Примечание.* Исследовательская работа осуществлена группой студентов первого курса, обучающихся по профессии операторы вычислительной техники под руководством преподователя физики.

Таблица для записи экспериментальных данных

постоянная	Е относительная диэлектрическая проницаемость	/ радиус диска (пластины)	S площадь круга, (диска)	d расстояние между пластинами	С электроемкость конденсатора

вывод:

 Электроемкость плоского конденсатора равна 16,4 пф (пикофарады).

Заключение

- Обрабатывая результаты исследований, ученики должны записать вывод:
- электроемкость плоского конденсатора прямо пропорциональна относительной диэлектрической проницаемости, прямо пропорциональна площади пластин, обратно пропорциональна расстоянию между пластинами. В символической форме это будет выглядеть так $C \sim \frac{\varepsilon \cdot S}{d}$

Литература:

- Касьянов В.А. Физика 10 кл.: Учебник для общеобразовательных учреждений. – М.: Дрофа, 2003.
- Энциклопедия для детей. Техника. М.: Аванта +, 2001.
- Пёрышкин А.В., Гутник Е.М. Физика 9 кл.: Учебник для общеобразовательных учреждений.- М.: Дрофа, 2002.
- Перельман Я.И. Знаете ли вы физику? М.: ВАП, 1994.
- Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для 10 кл. общеобразоват. учреждений. – М.: Просвещение, 2001.
- Яворский Б.М., Детлаф А.А. Справочник по физике для инженеров и студентов вузов. – М.: Издательство «Наука» Главная редакция физико-математической литературы. 1977.