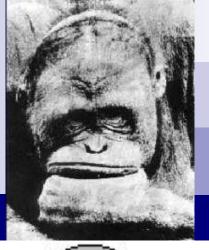
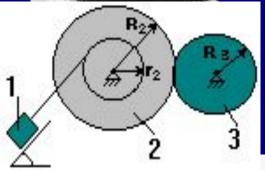


Бондаренко А.Н.





Курс лекций по теоретической механике

Кинематика

Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе (1974-2006 гг.). Учебный материал соответствует календарным планам в объеме трех семестров.

Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-XP Professional.

Запуск презентации – F5, навигация – Enter, навигационные клавиши, щелчок мыши, кнопки. Завершение – Esc.

Замечания и предложения можно послать по e-mail: bond@miit.ru .

Содержание

- **Лекция 1**. Кинематика точки. Способы задания движения. Уравнения движения. Траектория. Закон движения точки. Связь между тремя способами задания движения. Скорость точки.
- <u>Лекция 2.</u> Ускорение точки. Равнопеременное движение точки. Классификация движения точки. Пример решения задач на определение кинематических характеристик движения точки. Кинематика твердого тела. Виды движений. Поступательное движение.
- Лекция 3. Вращательное движение. Угловая скорость и угловое ускорение. Равнопеременное вращение. Скорость и ускорение точки тела при вращательном движении. Скорость и ускорение точки вращающегося тела как векторные произведения. Формула Эйлера. Преобразование вращений.
- Лекция 4. Плоскопараллельное движение твердого тела. Разложение плоского движения на поступательное и вращательное движения. Уравнения движения. Теорема о сложении скоростей. Следствия из теоремы. Мгновенный центр скоростей (МЦС).
- <u>Лекция 5.</u> Примеры использования МЦС для определения скоростей. Теорема о сложении ускорений.
 Мгновенный центр ускорений (МЦУ). Примеры использования теоремы о сложении ускорений и МЦУ для определения ускорений
- Лекция 6. Сферическое движение твердого тела. Теорема Эйлера. Угловая скорость и угловое ускорение. Скорость и ускорение точки тела во сферическом движении. Общий случай движения. Скорость точки свободного тела. Независимость векторов угловой скорости и углового ускорения от выбора полюса. ускорение точки свободного тела.
- <u>Лекция 7.</u> Сложное движение точки. Теорема о сложении ускорений точки при сложном движении.
 Теорема о сложении ускорений при сложном движении точки. Ускорение Кориолиса. Причины возникновения ускорения Кориолиса.
- <u>Лекция 8.</u> Сложное движение твердого тела. Сложение поступательных движений. Сложение вращательных движений. Сложение поступательного и вращательного движений. Общий случай составного движения тела. Кинематические инварианты.

Рекомендуемая литература

- 1. Яблонский А.А. Курс теоретической механики. Ч.1. М.: Высшая школа. 1977 г. 368 с.
- 2. Мещерский И.В. Сборник задач по теоретической механике. М.: Наука. 1986 г. 416 с.
- 3. Сборник заданий для курсовых работ /Под ред. А.А. Яблонского. М.:Высшая школа. 1985 г. 366 с.
- 4. Бондаренко А.Н. "Теоретическая механика в примерах и задачах. Кинематика" (электронное пособие www.miit.ru/institut/ipss/faculties/trm/main.htm), 2004 г.

Лекция 1

Кинематика – раздел теоретической механики, изучающий механическое движение без учета сил, вызывающих это движение, состоит из двух отделов:

- Кинематика точки изучает движение материальной точки, является базой для изучения движения точек твердого тела.
- Задание движения точки необходимо иметь возможность определения положения точки в пространстве в любой момент времени (уравнения, геометрия механизма и известный закон движения ведущего звена).
- Траектория движения точки совокупность положений точки в пространстве при ее движении.

Три способа задания движения точки:

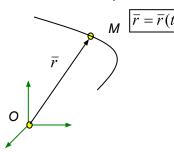
Векторный способ:

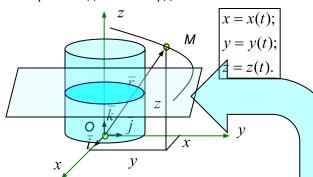
Координатный способ:

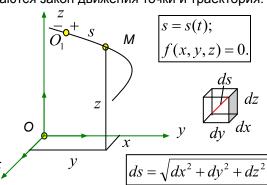
Естественный способ:

Задается величина и направление радиуса-вектора. Задаются координаты положения точки.

Задаются закон движения точки и траектория.







Все три способа задания эквивалентны и связаны между собой:

1. Векторный и координатный – соотношением:

$$\bar{r}(t) = x(t)\bar{i} + y(t)\bar{j} + z(t)\bar{k}$$

2. Координатный и естественный – соотношением:

$$s(t) = \int \sqrt{x_1^2 + y_1^2 + z_2^2} dt$$

3. Для получения уравнения траектории движения необходимо из уравнений движения координатного способа исключить время, т.к. траектория

$$x = x(t) \Rightarrow t = t(x);$$

$$y = y(t) \Rightarrow y[t(x)] = y(x);$$

$$z = z(t) \Rightarrow z[t(x)] = z(x).$$

Последние два уравнения представляют собой уравнения линейчатых поверхностей, линия пересечения которых и есть траектория движения точки.

Например:

$$x = t \Rightarrow t = x$$

$$y = \sqrt{R^2 - t^2} \Rightarrow \sqrt{R^2 - x^2}$$
или $x^2 + y^2 = R^2$;
$$z = c.$$

Последние два уравнения представляют собой уравнения цилиндрической поверхности радиуса R с образующей, параллельной оси z, и плоской поверхности, параллельной координатной плоскости Oxy и смещенной по оси z на величину c. Линия пересечения этих поверхностей (окружность радиуса R) - траектория движения точки.

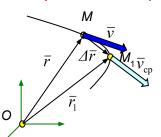
Лекция 1 (продолжение – 1.2) **▶**

Скорость точки – величина, характеризующая быстроту изменения положения точки в пространстве.

Три способа задания движения точки определяют способы определения скорости точки:

Устремим $\Delta t \rightarrow 0$ и перейдем к пределу:

Векторный способ: Сравним два положения точки в моменты времени t и t_1 = t + Δt :



$$\frac{\Delta \overline{r}}{\Delta t} = \overline{v}_{\rm cp}$$

- вектор средней скорости в интервале времени Δt , направлен по направлению вектора перемещения (хорде MM_{\star}).

$$\underbrace{\lim_{\Delta t} \underline{\lim}_{0} \frac{\Delta \overline{r}}{\Delta t} = \overline{v}}$$

Предел отношения приращения функции к приращению приращения аргумента есть производная функции (по определению):

$$\lim_{\Delta t} \underline{\lim}_{0} \frac{\Delta \overline{r}}{\Delta t} = \frac{d\overline{r}}{dt}$$

$$\overline{v} = \frac{d\overline{r}}{dt}$$

- вектор истинной скорости точки в момент времени t, направлен по касательной к траектории (при приближении M_{\star} к M хорда занимает положение касательной).

Координатный способ: Связь радиуса-вектора с координатами определяется выражением:

$$\overline{r}(t) = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$$

(составляющие) вектора скорости:

$$\begin{split} \overline{v}_x &= \cancel{\Sigma}(t)\overline{i}; \\ \overline{v}_y &= \cancel{\Sigma}(t)\overline{j}; \\ \overline{v}_z &= \cancel{\Sigma}(t)\overline{k}. \end{split}$$

Проекции скорости на оси координат:

$$v_{x} = x_{1}$$

$$v_{y} = y_{1}$$

$$v_{z} = x_{2}$$

$$v = \sqrt{\underline{x}} + \underline{y} + \underline{z}$$

$$\cos(\overline{v}, x) = \frac{\underline{x}}{v};$$

$$\cos(\overline{v}, y) = \frac{\underline{y}}{v}.$$

Используем векторную форму определения скорости:

Естественный способ:

 ν

Представим радиус-вектор как сложную функцию: $|\bar{r}(t) = \bar{r}[s(t)]|$

Представим производную радиус-вектора как предел:

$$\frac{d\overline{r}}{ds} =_{\Delta s} \underline{\lim}_{0} \frac{\Delta \overline{r}}{\Delta s}.$$

$$\overline{v} = \frac{d\overline{r}(t)}{dt} = \frac{d\overline{r}}{ds}\frac{ds}{dt} = \frac{d\overline{r}}{ds} \, \mathcal{L}$$

Вектор приращения радиуса-вектора направлен по хорде ММ, и в пределе занимает положение касательной.

Величина производной радиуса-вектора по дуговой координате равна 1:

$$\left| \frac{d\overline{r}}{ds} \right| =_{\Delta s} \underline{\lim}_{0} \left| \frac{\Delta \overline{r}}{\Delta s} \right| =_{\Delta \varphi} \underline{\lim}_{0} \frac{2\rho \sin \frac{\Delta \varphi}{2}}{\rho \Delta \varphi} = 1.$$

Таким образом, производная радиуса-вектора по дуговой координате есть единичный вектор, направленный по касательной к траектории.

Вектор скорости равен: $|\overline{v} = \sqrt[3]{\tau}$. Проекция скорости на касательную:

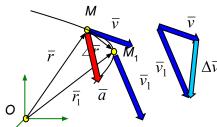
При |s| > 0 вектор скорости направлен в сторону увеличения дуговой координаты, В противном случае – в обратную сторону.

При $\Delta s \to 0$ радиус кривизны $\rho_1 \to \rho$, угол между радиусами кривизны $\Delta \phi \rightarrow 0$, числитель - основание равнобедренного треугольника, знаменатель – длина круговой дуги радиуса ρ .

Лекция 2 🕨

Ускорение точки – величина, характеризующая быстроту изменения скорости точки.

Три способа задания движения точки определяют способы определения ускорения точки: Векторный способ: Сравним скорости точки в двух положениях точки в моменты времени t и $t_4 = t + \Delta t$:



$$\frac{\Delta \overline{v}}{\Delta t} = \overline{a}_{\rm cp}$$

 вектор среднего ускорения в интервале времени ∆t, направлен в сторону вогнутости траектории. Переходя к пределу получаем:

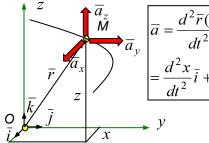
$$\int_{\Delta t} \underline{\lim}_{0} \frac{\Delta \overline{v}}{\Delta t} = \overline{a}$$

 $\underbrace{\lim_{\Delta t} \underline{\lim}_{0} \frac{\Delta \overline{v}}{\Delta t} = \overline{a}}_{\Delta t} = \overline{a}$ $\underbrace{\lim_{\Delta t} \underline{\lim}_{0} \frac{\Delta \overline{v}}{\Delta t} = \frac{d\overline{v}}{dt}}_{\Delta t}$

- вектор истинного ускорения точки в момент времени t, лежит в соприкасающейся плоскости (предельное положение плоскости, проведенной через касательную в точке M и прямую, параллельную касательной в точке M_4 , при стремлении M_{4} к M) u направлен в сторону вогнутости траектории.

Координатный способ: Используем полученное векторное выражение и связь радиуса-вектора с координатами

$$\overline{r}(t) = x(t)\overline{i} + y(t)\overline{j} + z(t)\overline{k}$$



$$\bar{a} = \frac{d^2 \bar{r}(t)}{dt^2} = \frac{d^2}{dt^2} \left[x(t)\bar{i} + y(t)\bar{j} + z(t)\bar{k} \right] =
= \frac{d^2 x}{dt^2} \bar{i} + \frac{d^2 y}{dt^2} \bar{j} + \frac{d^2 z}{dt^2} \bar{k} = a_x \bar{i} + a_y \bar{j} + a_z \bar{k}$$

Компоненты (составляющие) вектора ускорения:

$$\overline{a}_x = \overline{M};$$
 $\overline{a}_y = \overline{M};$
 $\overline{a}_z = \overline{M}.$

Проекции ускорения на оси координат:

$$\begin{bmatrix} a_x = \mathbf{x} \\ a_y = \mathbf{x} \end{bmatrix}$$

Естественный способ: Используем векторное выраже

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d}{dt}(\mathbf{F}) = \mathbf{F} + \mathbf{F}\frac{d\overline{\tau}}{dt}.$$

Величина производной единичного касательного в по дуговой координате:

Таким образом полное ускорение точки есть векторная сумма двух ускорений: касательного, направленного по касательной к траектории в сторону увеличения дуговой координаты, если | ∭⊳ () (в противном случае – в противоположную) и нормального ускорения, направленного по нормали к касательной в сторону центра кривизны (вогнутости траектории): $\overline{a} = \overline{a}_{\tau} + \overline{a}_{n}$.

Модуль полного ускорения:

$$a = \sqrt{a_{\tau}^2 + a_n^2}$$

Введем единичный вектор n, нормальный (перпендикулярный) к касательной, направленный к центру кривизны.

С использованием вектора n и ранее определенных величин ускорение представляется как сумма векторов:

Компоненты (составляющие) вектора ускорения:

$$\overline{a}_{\tau} = \overline{\mathbf{M}};$$

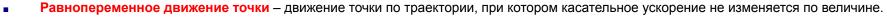
$$\overline{a}_{\tau} = \overline{\mathbf{M}};$$

Проекции ускорения

касательной к траектории.

Проекции ускорения на оси
$${\bf 7}$$
 и ${\bf n}$: $a_{\tau\tau}={\bf m}\over a_n={\bf m}\over \rho}$.

Лекция 2 (продолжение 2.2) ▶



$$a_{\tau\tau} = \mathbb{H} = const.$$
 Запишем выражение для касательного ускорения через проекцию скорости: $a_{\tau\tau} = \mathbb{H} = \frac{d}{dt} \mathfrak{g} = \frac{dv_{\tau}}{dt}$

Полученное выражение есть дифференциальное уравнение, которое легко решается разделением переменных и интегрированием левой и правой частей: $v_{\bar{t}}$ -скорость точки

$$dv_{ au} = a_{ au au} dt$$
 $\int\limits_{v_{ au 0}}^{v_{ au}} dv_{ au} = a_{ au au} \int\limits_{0}^{t} dt;$ $v_{ au} \Big|_{v_{ au 0}}^{v_{ au}} = a_{ au au} t \Big|_{0}^{t};$ $v_{ au} - v_{ au 0} = a_{ au au} t$ $v_{ au} = v_{ au 0} + a_{ au au} t$ -скорость точки при равнопеременном движении ость точки также связывается с дуговой координатой дифференциальной зависимостью: $v_{ au} = \frac{ds}{dt}$ или $ds = v_{ au} dt$

В свою очередь скорость точки также связывается с дуговой координатой дифференциальной зависимостью: $v_{\tau} = \frac{ds}{dt}$ или $ds = v_{\tau} dt$.

После подстановки выражения для скорости и интегрирования получаем :
$$\int\limits_{s_0}^s ds = \int\limits_0^t (v_{\tau 0} + a_{\tau \tau} t) dt; \quad s\big|_{s_0}^s = (v_{\tau 0} t + a_{\tau \tau} \frac{t^2}{2}) \bigg|_0^t; \quad s - s_0 = v_{\tau 0} t + a_{\tau \tau} \frac{t^2}{2}.$$

$$\boxed{s = s_0 + v_{\tau 0} t + a_{\tau \tau} \frac{t^2}{2}} - \text{дуговая координата точки при равно-переменном движении}$$

Классификация движений точки.

Nº	$\overline{a}_{\scriptscriptstyle au}$	\overline{a}_n	Вид движения	
ПП			Закон движения	Траектория
1	$= 0 [t, t_1]$	$= 0 [t, t_1]$	равномерное (<i>v</i> = const)	прямолинейное (ρ = ∞)
2	$= 0 [t, t_1]$	≠ 0 [t, t ₁]	равномерное (<i>v</i> = const)	криволинейное (ρ ≠ ∞)
2.1	= 0 в момент времени <i>t</i>	$= 0 [t, t_1]$	неравномерное ($v ≠$ const), в момент времени t v = max	прямолинейное (ρ = ∞)
2.2		$\neq 0 [t, t_1]$		криволинейное (ρ ≠ ∞)
3	≠ 0 [t, t ₁]	$= 0 [t, t_1]$	неравномерное (<i>v</i> ≠ const)	прямолинейное (ρ = ∞)
3.1		= 0 в момент	перемена направления движения (v = 0 при <i>t</i> = <i>t</i>)	любая траектория
3.2		времени <i>t</i>	неравномерное (<i>v</i> ≠ const)	перегиб траектории (ρ = ∞ при t = t)
4	≠ 0 [t, t ₁]	≠ 0 [t, t ₁]	неравномерное (<i>v</i> ≠ const)	криволинейное (ρ ≠ ∞)
5	$= const [t, t_1]$	любое	равнопеременное	любая траектория

Лекция 2 (продолжение 2.3)

- **Исследование работы кривошипно-шатунного механизма** См. решение задачи М.12.18 "Теоретическая механика в примерах и задачах. Кинематика" (электронное пособие автора www.miit.ru/institut/ipss/faculties/trm/main.htm),
- **Кинематика твердого тела** изучает движение твердого тела, кинематика точки используется для получения новых зависимостей и формул.

Существует пять видов движения твердого тела:

- 1. Поступательное (ползун, поршень насоса, спарник колес паровоза, движущегося по прямолинейному пути, кабина лифта, дверь купе, кабина колеса обозрения).
- 2. Вращательное (маховик, кривошип, коромысло, колесо обозрения, обычная дверь).
- 3. Плоскопараллельное или плоское (шатун, колесо локомотива при качении по прямолинейному рельсу, шлифовальный круг).
- 4. Сферическое (гироскоп, шаровая стойка).

 \bar{r}_{B}

В

5. Общий случай движения или свободный полет (пуля, камень, небесное тело)

 $\bar{r}_{\scriptscriptstyle A}$

- Поступательное движение твердого тела такое движение при котором любая прямая, жестко связанная с телом, остается параллельной самой себе. Обычно поступательное движение отождествляется с прямолинейным движением его точек, однако это не так. Точки и само тело (центр масс тела) могут двигаться по криволинейным траекториям, см. например, движение кабины колеса обозрения.
- Теорема о поступательном движении твердого тела При поступательном движении твердого тела все его точки описывают тождественные траектории и имеют в каждый момент времени геометрически равные скорости и ускорения.

Проведем радиус-векторы к двум точкам A и B, а также соединим эти точки вектором r_{BA} .

В любой момент времени выполняется векторное равенство: $\bar{r}_{A}(t) = \bar{r}_{B}(t) + \bar{r}_{BA}$.

В любой момент времени вектор r_{BA} остается постоянным по направлению (по определению поступательного движения) и по величине

(расстояние между точками не изменяется). Отсюда:

 $|\bar{r}_A(t)| = \bar{r}_B(t) + \overline{const}$

Таким образом, поступательное движение твердого тела полностью определяется движением одной точки, принадлежащей этому телу и выбранной произвольным образом. Все параметры движения этой точки (траектория, скорость и ускорение) описываются уравнениями и соотношениями кинематики точки.

aı aı

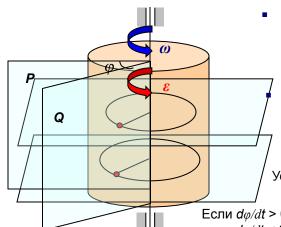
и это означает, что в каждый момент времени **скорость точки A** равна геометрически (т.е. векторно) **скорости точки B**. $\sqrt{\overline{v}_{-}(t)} = \overline{v}_{-}(t)$

Второе дифференцирование по времени приводит к соотношению: $\frac{d\overline{r}^2_A(t)}{dt^2} = \frac{d\overline{r}^2_B(t)}{dt^2}$

и это означает, что в каждый момент времени ускорение точки A равно геометрически (т.е. векторно) ускорению точки B. $\overline{a}_{\scriptscriptstyle A}(t) = \overline{a}_{\scriptscriptstyle B}(t)$.

🔼 Лекция 3 🕨

■ Вращательное движение твердого тела – движение при котором все его точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения.



Задание вращательное движения – движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом:

$$| \overline{ arphi = arphi(t) } |$$
 - уравнение вращательного движения

Угловая скорость - величина, характеризующая быстроту изменения угла поворота.

$$\begin{bmatrix} t & \Rightarrow \varphi; \\ t_1 = t + \Delta t \Rightarrow \varphi_1 = \varphi + \Delta \varphi; \end{bmatrix}$$

$$\boxed{rac{arDelta arphi}{arDelta t} = \omega_{
m cp}}$$
 - средняя угловая скорость в интервале времени Δt ,

Устремим $\Delta t \rightarrow 0$ и перейдем к пределу:

$$\lim_{\Delta t} \underline{\lim}_{0} \frac{\Delta \varphi}{\Delta t} = \omega \qquad \omega = \frac{d\varphi}{dt} = \varphi$$

- истинная угловая скорость в момент времени *t*

Если $d\varphi/dt > 0$, то вращение происходит в сторону увеличения угла поворота, если $d\varphi/dt < 0$, то вращение происходит в сторону уменьшения угла поворота.

• Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости.

 $\boxed{rac{arDelta\omega}{arDelta t}=arepsilon_{
m cp}}$ - среднее угловое ускорение в интервале времени Δt ,

Устремим $\Delta t \rightarrow 0$ и перейдем к пределу:

$$\underline{\lim_{\Delta t} \underline{\lim}_{0} \frac{\Delta \omega}{\Delta t} = \varepsilon} \boxed{\varepsilon = \frac{d\omega}{dt} = \underline{\omega} = \underline{\omega}}$$

- истинное угловое ускорение в момент времени *t*

Угловая скорость изображается дуговой стрелкой в сторону вращения.

Угловое ускорение изображается дуговой стрелкой в сторону увеличения угла поворота при $\bigcirc 0$.

Если $d^2\varphi/dt^2$ и $d\varphi/dt$ одного знака, то скорость увеличивается по модулю и вращение называется ускоренным (дуговые стрелки угловой скорости и углового ускорения направлены в одну сторону),

если $d^2\varphi/dt^2$ и $d\varphi/dt$ разного знака, то скорость уменьшается по модулю и вращение называется замедленным (дуговые стрелки угловой скорости и углового ускорения направлены в противоположные стороны).

• Равномерное вращение – угловая скорость не изменяется по величине.

$$\omega = const.$$

$$\omega = \frac{d\varphi}{dt}; \quad \int_{\varphi_0}^{\varphi} d\varphi = \omega \int_{0}^{t} dt;$$

$$\varphi = \varphi_0 + \omega t.$$

Равнопеременное вращение – угловое ускорение не изменяется по величине.

$$\varepsilon = const.$$

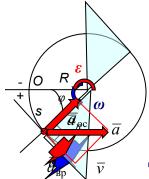
$$\varepsilon = \frac{d\omega}{dt}; \quad \int_{\omega_0}^{\omega} d\omega = \varepsilon \int_0^t dt;$$

$$\omega = \omega_0 + \varepsilon t.$$

$$\omega = \frac{d\varphi}{dt}; \quad \int_{\varphi_0}^{\varphi} d\varphi = \int_{0}^{t} (\omega_0 + \varepsilon t) dt;$$

$$\varphi = \varphi_0 + \omega_0 t + \varepsilon \frac{t^2}{2}$$

Скорость точки при вращательном движении твердого тела – траектория точки известна (окружность радиуса R – расстояние точки до оси вращения), можно применить формулу для определения скорости точки при естественном задании движения:



Дуговая координата связана с радиусом окружности:

$$s = \varphi R$$
.

Тогда проекция скорости

Тогда проекция скорости на касательную к окружности:
$$v_{\tau} = \frac{d}{dt}(\varphi R) = \frac{d\varphi}{dt}R = \omega R.$$

Поскольку далее работают с модулем угловой скорости после изображения ее

- в виде дуговой стрелки расчетной формулой является выражение для модуля скорости: $v = \omega \cdot R$ и вектор скорости направляют перпендикулярно радиусу
- в сторону дуговой стрелки угловой скорости.

Как следует из формулы скорость точки пропорциональна расстоянию ее до оси вращения (радиусу вращения).

Ускорение точки при вращательном движении твердого тела – траектория точки известна, можно применить формулы для определения ускорений точки при естественном задании движения:

Тогда проекции ускорения

Тогда проекции ускорения на касательную к окружности и нормаль:
$$a_{\tau} = \frac{d^2}{dt^2}(\varphi R) = \frac{d^2\varphi}{dt^2}R = \varepsilon R.$$
 $a_n = \frac{1}{\rho} \left\lceil \frac{d}{dt}(\varphi R) \right\rceil^2 = \frac{1}{R} \left\lceil \frac{d\varphi}{dt}R \right\rceil^2 = \omega^2 R.$

Поскольку далее работают с модулем углового ускорения после изображения его в виде дуговой стрелки расчетной формулой является выражение для касательного ускорения: $a = \varepsilon \cdot R$ и вектор этого ускорения, называемого **вращательным ускорением**, направляют перпен $\frac{\alpha}{\mu}$ перпен $\frac{\alpha}{$

Нормальное ускорение теперь называется осестремительным ускорением $a_{\rm oc} = \omega^2 \cdot R$ независимо от направления дуговой стрелки угловой скорости, не говоря уж о направлении дуговой стр

Как следует из формул оба ускорения точки пропорциональны расстоянию ее до оси вращения (

Полное ускорение точки, как и ранее, есть векторная сумма этих ускорений: $|\overline{a}=\overline{a}_{\rm sp}+\overline{a}_{\rm oc}$.

ий:
$$\overline{a}=\overline{a}_{
m Bp}+\overline{a}_{
m oc}$$
 . Угол ради

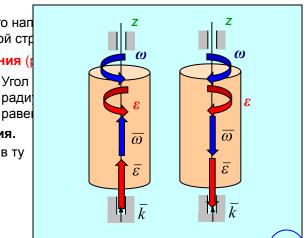
Скорость и ускорения точки при вращательном движении как векторные произведения.

Представим угловую скорость и угловое ускорения как векторы, направленные по оси вращения в ту сторону, откуда дуговые стрелки этих величин указывают вращение против часовой стрелки.

Положительное направление оси z можно задать с помощью единичного вектора k, тогда векторы угловой скорости и углового ускорения можно представить как: где ω_{z} , ϵ_{z} – проекции соответствующих векторов на ось z.

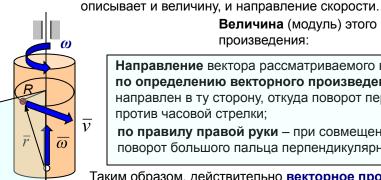
$$\overline{\omega} = \omega_z \overline{k}$$

$$\overline{\varepsilon} = \varepsilon_z \overline{k}$$



Лекция 3 (продолжение 3.3)

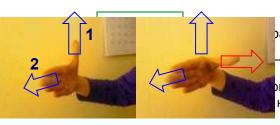
 $\overline{v} = \overline{\omega \kappa} \otimes \overline{\rho} p \phi e$



Величина (модуль) этого ве

произведения:

Направление вектора рассматриваемого ве по определению векторного произведени направлен в ту сторону, откуда поворот перв против часовой стрелки;



разом: $v = \omega \cdot R$.

ой через умножаемые вектора, кажется происходящим

которое

по правилу правой руки – при совмещении большого пальца с первым вектором, остальных – со вторым вектором, поворот большого пальца перпендикулярно ладони указывает на направление вектора векторного произведения.

Таким образом, действительно векторное произведение угловой скорости и радиус-вектора полностью определяет величину и направление скорости точки при вращательном движении в соответствии с ранее полученными результатами.

Вращательное ускорение точки как векторное произведение – определяется выражением

$$\overline{a}_{
m Bp} = \overline{arepsilon} imes \overline{r}$$
/скорения. ______

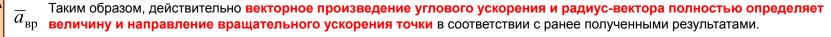
описывает и величину, и направление вращательного ускорения.

Величина (модуль) этого векторного $\sin(\bar{\varepsilon},\bar{r})$ произведения:

Таким образом:

$$a_{\rm Bp} = \varepsilon \cdot R.$$

Направление вектора рассматриваемого векторного произведения можно установить по определению векторного произведения или по правилу правой руки.



Осестремительное ускорение точки как векторное произведение - определяется которое описывает и величину, и направление осестремительного выражением ускорения.

Величина (модуль) этого векторного произведения:

$$|\overline{a}_{\rm oc}| = |\overline{\omega}| \cdot |\overline{v}| \sin(\overline{\omega}, \overline{v})$$
. Так

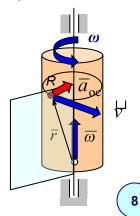
$$|\overline{\omega}| \cdot |\overline{v}| \sin(\overline{\omega}, \overline{v}).$$
 Таким образом: $v = \omega \cdot v = \omega(\omega \cdot R) = \omega^2 R$.

Направление вектора рассматриваемого векторного произведения можно установить по определению векторного произведения или по правилу правой руки.

1, т.к. вектор скорости точки перпендикулярен плоскости, Таким образом, действительно векторное произведение угловой скоростили вектора скоростили полностью определяет величину и направление осестремительного ускорения точки в соответствии с ранее полученными результатами.

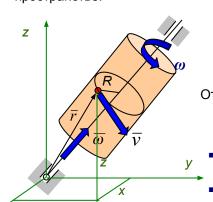
Это векторное произведение может быть также записано в виде:

$$\overline{a}_{\rm oc} = \overline{\omega} \times (\overline{\omega} \times \overline{r})$$



Лекция 3 (продолжение 3.4)

Формулы Эйлера - с помощью раскрытия векторного произведения для скорости точки можно получить общие аналитические выражения для этой скорости через координаты рассматриваемой точки при произвольной расположении оси вращения в пространстве:



$$\overline{v} = \overline{\omega} \times \overline{r} = \begin{vmatrix} \overline{i} & \overline{j} & k \\ \omega_x & \omega_y & \omega_z \\ x & y & z \end{vmatrix} = (\omega_y z - \omega_z y) \overline{i} + (\omega_z x - \omega_x z) \overline{j} + (\omega_x y - \omega_y x) \overline{k}$$

Отсюда получаются аналитические формулы для проекций скоростей точки:

$$\begin{aligned} v_x &= \omega_y z - \omega_z y; \\ v_y &= \omega_z x - \omega_x z; \\ v_z &= \omega_x y - \omega_y x. \end{aligned}$$

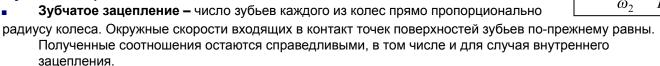
Преобразования вращательных движений – изменение величины и направление угловых скоростей вращающихся звеньев в различных передаточных механизмах:

Фрикционное зацепление:

Скорости входящих в контакт точек колес при отсутствии проскальзывания равны:

$$v_1=v_2$$
; $\omega_1R_1=\omega_2R_2$. Отсюда:

Передаточное число, характеризующее изменение скорости вращения при передаче вращения от одного звена к другому - отношение угловой скорости ведущего колеса к угловой скорости ведомого:



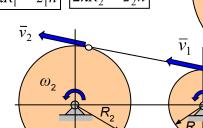
Радиусы делительных окружностей связаны с шагом зубьев соотношениями: С использованием чисел зубьев каждого из колес имеем:

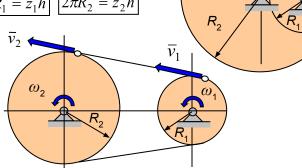
Ременная и цепная передачи -. Окружные скорости входящих в контакт с ремнем или цепью точек поверхностей обоих колес или зубьев этих колес по-прежнему равны (ремень или цепь не растягиваются и не сжимаются).

Полученные соотношения остаются справедливыми.

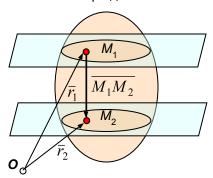
$$\boxed{\frac{\omega_1}{\omega_2} = \frac{z_2}{z_1}}$$

$$\frac{\omega_1}{\omega_2} = \frac{z}{z}$$





Плоскопараллельное движение твердого тела – движение при котором каждая точка тела движется в в плоскости параллельной некоторой неподвижной плоскости. Сечение тела одной из таких плоскостей есть плоская фигура, остающаяся в этой плоскости при движении тела.



Теорема о плоскопараллельном движении твердого тела – плоскопаралллельное движение твердого тела однозначным образом определяется движением плоской фигуры, образованной сечением тела одной из параллельных плоскостей.

Выберем две точки на произвольных двух сечениях тела, находящиеся на одном перпендикуляре к этим плоскостям:

Проведем к каждой точке радиусы-векторы из неподвижной точки О и свяжем их между собой вектором M_1M_2 :

 $\bar{r}_2 = \bar{r}_1 + \overline{M_1 M_2}$

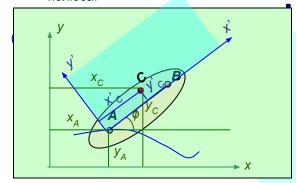
При плоском движении тела вектор M_1M_2 не изменяется по величине, остается параллельным самому себе (движется поступательно) и, следовательно, точки этого вектора описывают тождественные траектории и имеют в каждый момент времени одинаковые скорости и ускорения:

$$\boxed{\frac{d\overline{r}_2}{dt} = \frac{d\overline{r}_1}{dt}; \quad (\overline{M_1M_2} = \overline{const}); \quad \overline{v}_2 = \overline{v}_1, \quad \text{if} \quad \frac{d^2\overline{r}_2}{dt^2} = \frac{d^2\overline{r}_1}{dt^2}; \quad \overline{a}_2 = \overline{a}_1.}$$

Таким образом, при плоском движении тела движение каждой точки одной из плоских фигур определяет движение соответствующих точек, находящихся во всех других смежных параллельных плоскостях.

Следствие: Поскольку положение плоской фигуры однозначно определяется положением ее двух точек или отрезка прямой, проведенной через эти точки, то плоскопараллельное движение твердого тела определяется движением прямолинейного отрезка, принадлежащего одному из сечений тела параллельными плоскостями.

Разложение плоскопараллельного движения плоской фигуры на поступательное и вращательное движения – Плоскую фигуру или отрезок прямой можно перевести из одного положения в другое бесчисленным множеством способов, меняя последовательность выполнения поступательного и вращательного движения между собой, а также выбирая различные траектории и точки в качестве полюса:



Таким образом, плоскопараллельное движение состоит из двух движений: поступательное и вращательное, и его всегда можно разложить на эти два движения.

Уравнение движения плоской фигуры: Выбирая в качестве полюса любую точку, например, А, поступательная часть движения будет описываться уравнениями движения этой точки. Вращательная часть движения описывается уравнением изменения угла поворота вокруг полюса:

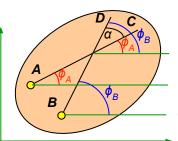
$$\begin{vmatrix} x_A = x_A(t); \\ y_A = y_A(t); \\ \varphi = \varphi(t). \end{vmatrix}$$

Уравнения движения любой точки плоской фигуры, положение которой задается координатами локальной системы отсчета, связанной с фигурой: $x_C = x_A(t) + x_C' \cos \varphi(t) - y_C' \sin \varphi(t);$

$$\begin{aligned} x_C &= x_A(t) + x_C' \cos \varphi(t) - y_C' \sin \varphi(t); \\ y_C &= y_A(t) + x_C' \sin \varphi(t) + y_C' \cos \varphi(t). \end{aligned}$$

Лекция 4 (продолжение 4.2)

Независимость угловой скорости и углового ускорения плоской фигуры от выбора полюса – Выберем два произвольных прямолинейных отрезка, изображающих положение плоской фигуры и два полюса на этих отрезках:



Углы наклона отрезков к горизонтальной оси различны и связаны между собой соотношением: $\varphi_{\scriptscriptstyle R}(t) = \varphi_{\scriptscriptstyle A}(t) + \alpha$.

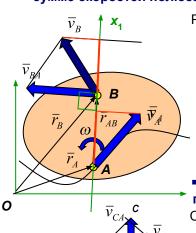
 $\frac{d\varphi_B(t)}{dt} = \frac{d\varphi_A(t)}{dt}, \quad (\alpha = const).$ Продифференцируем это соотношение:

Отсюда следует, что угловые скорости двух отрезков равны:

После повторного дифференцирования следует. что угловые ускорения двух отрезков также равны: $\frac{d\omega_{\mathit{CA}}}{\mathit{dt}} = \frac{d\omega_{\mathit{DB}}}{\mathit{dt}}. \quad \varepsilon_{\mathit{CA}} = \varepsilon_{\mathit{DB}}.$

Таким образом, угловая скорость и угловое ускорение плоской фигуры не зависят от выбора полюса и их можно представить в виде векторов, перпендикулярных плоскости фигуры:

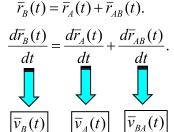
Теорема о сложении скоростей – Скорость любой точки плоской фигуры равна геометрической сумме скоростей полюса и вращательной скорости этой точки вокруг полюса.



Радиусы-векторы точек А и В связаны между собой соотношением:

Второе слагаемое есть вращательная скорость точки B вокруг полюса A:

$$\overline{v}_{BA}(t) = \overline{\omega}(t) \times \overline{r}_{AB}(t); \quad |\overline{r}_{AB}| = const.$$



Таким образом, скорость точки В равна геометрической сумме скорости полюса А и вращательной скорости точки В вокруг полюса:

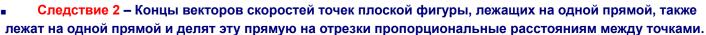
$$\overline{v}_B = \overline{v}_A + \overline{\omega} \times \overline{r}_{AB} = \overline{v}_A + \overline{v}_{BA}.$$

Следствие 1 – Проекции скоростей точек плоской фигуры на ось,

проходящую через эти точки равны.

Спроецируем векторное соотношение на ось x_4 :

$$(x_1): \quad v_{Bx1} = v_{Ax1}, \quad (\overline{v}_{BA} \perp x_1).$$



Концы векторов вращательных скоростей точек В и А лежат на одной прямой и делят ее на отрезки пропорциональные расстояниям между точками:

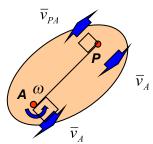
Концы векторов скоростей полюса А лежат, изображенных в точках В и С также лежат на одной прямой.

$$v_{BA} = \omega AB$$
, $v_{CA} = \omega AC$, $\frac{v_{CA}}{v_{BA}} = \frac{AC}{AB} = \frac{Ac}{Ab}$.

Нетрудно доказать из подобия треугольников, что концы векторов скоростей точек В и С также лежат на одной прямой, и делят эту прямую на части, пропорциональные расстояниям между точками.

Лекция 4 (продолжение 4.3)

Мгновенный центр скоростей (МЦС) – При движении плоской фигуры в каждый момент времени существует точка, жестко связанная с плоской фигурой, скорость которой в этот момент равна нулю.



Пусть известна скорость одной из точек фигуры и угловая скорость вокруг этой точки:

Запишем векторное соотношение для скорости некоторой точки Р согласно теоремы о сложении скоростей:

$$\overline{\overline{v}_P}=\overline{v}_A+\overline{\omega} imes\overline{r}_{AP}=\overline{v}_A+\overline{v}_{PA}.$$
 Зададим значение скорости этой точки P равной нулю: $\overline{\overline{v}_P}=0.$

Тогда получаем:
$$\overline{v}_{PA} = \overline{\omega} \times \overline{r}_{AP} = -\overline{v}_A$$
.

Тогда получаем: $\overline{v}_{PA}=\overline{\omega} imes\overline{r}_{AP}=-\overline{v}_A$. Т.е. вращательная скорость искомой точки должна быть равна по модулю скорости точки А, параллельна этой скорости и направлена в противоположную сторону.

Это позволяет найти положение МЦС (точки Р), а именно: МЦС должен находиться на перпендикуляре к скорости точки A, отложенном в сторону угловой скорости, на расстоянии:

$$AP = \frac{v_A}{\omega}.$$

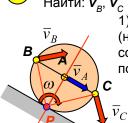
Если положение МЦС найдено, скорость любой точки плоской фигуры может быть легко определена посредством выбора полюса в МСЦ. В этом случае векторное выражение теоремы о сложении скоростей вырождается в известную зависимость скорости от расстояния до центра вращения:

Другими словами, можно утверждать, что в любой момент времени тело не совершает никакого другого движения,

кроме как вращательного движения вокруг МЦС.

Лекция 5 🕨

- Примеры использования МЦС для определения скоростей точек плоской фигуры Поскольку при движении плоской фигуры в каждый момент времени существует точка (МЦС), жестко связанная с плоской фигурой, скорость которой в этот момент равна нулю, то при определении скоростей эту точку и следует выбирать в качестве полюса, играющего роль центра вращения в данный момент времени.
- Ниже рассмотрим процедуру определения скоростей на примерах:



Дано: \mathbf{v}_{A} , положения точек A, B, C,проскальзывание отсутствует. Найти: $\mathbf{v}_{\scriptscriptstyle R}$, $\mathbf{v}_{\scriptscriptstyle C}$

> 1) МЦС находится на перпендикуляре к вектору \mathbf{v}_{λ} (нет проскальзывания и точка с нулевой скоростью

> совпадает с точкой контакта колеса и неподвижной поверхностью качения).

2) Определяем угловую скорость: $\omega = \frac{v_A}{\omega}$

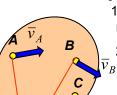
Дуговая стрелка угловой скорости направлена в сторону вектора линейной скорости $\boldsymbol{v}_{\scriptscriptstyle A}$.

3) Соединяем точки В и С с МЦС и определяем скорости этих точек:

Дано: \mathbf{v}_{A} , \mathbf{v}_{B} , положения точек A, B, C.

Векторы линейных скоростей v_{p} и v_{c} направлены в сторону дуговой стрелки угловой скорости.

Векторы линейных скоростей $\mathbf{v}_{_{\mathbf{B}}}$ и $\mathbf{v}_{_{\mathbf{C}}}$ направлены в сторону дуговой стрелки угловой скорости.



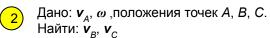
МЦС находится на пересечении перпендикуляров к векторам $\boldsymbol{v}_{\!\scriptscriptstyle A}$, $\boldsymbol{v}_{\!\scriptscriptstyle B}$,

- 2) Определяем угловую скорость: $|_{\omega} = -$

Дуговая стрелка угловой скорости направлена в сторону векторов линейных скоростей $\boldsymbol{v_{\scriptscriptstyle A}}$ $\boldsymbol{v_{\scriptscriptstyle R}}$.

3) Соединяем точку С с МЦС и определяем скорость этой точки:

Вектор линейной скорости у направлен в сторону дуговой стрелки угловой скорости.



- 1) МЦС находится на перпендикуляре к вектору $\boldsymbol{v}_{\scriptscriptstyle A}$
- 2) Определяем расстояние до МЦС:

Расстояние *AP* откладываем в сторону дуговой стрелки угловой скорости. Дуговую стрелку угловой скорости изображаем вокруг МЦС.

3) Соединяем точки В и С с МЦС и определяем скорости этих точек:

$$v_B = \omega \cdot BP;$$

$$v_C = \omega \cdot CP.$$

- Дано: \mathbf{v}_{A} , траектория точки B, положения точек A, B, C. Найти: $\dot{\mathbf{v}}_{C}$
 - МЦС находится на пересечении перпендикуляров к вектору $\mathbf{v}_{_{A}}$ и касательной к траектории точки B.
 - 2) Определяем угловую скорость:

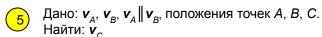
 $\sqrt{v_C}$ Дуговая стрелка угловой скорости направлена в сторону векторов линейной скорости $\boldsymbol{v}_{\boldsymbol{\lambda}}$.

3) Соединяем точку С с МЦС и определяем скорость этой точки: $v_C = \omega \cdot CP$.

Вектор линейной скорости у направлен в сторону дуговой стрелки угловой скорости.

Лекция 5 (продолжение 5.2)

Примеры использования МЦС для определения скоростей точек плоской фигуры



1) МЦС находится на пересечении перпендикуляров $\sqrt{\mathcal{V}}_A$ к векторам $oldsymbol{v}_{_{\! A}}$ и $oldsymbol{v}_{_{\! B}}$. Эта точка находится в бесконечности.

2) Угловая скорость обращается в нуль (мгновенно

поступательное движение):

 $\omega = \frac{v_A}{\omega} = \frac{v_B}{\omega} = 0.$

3) Скорость точки С равна геометрически скоростям точек A и B: $|\bar{v}_C = \bar{v}_A = \bar{v}_B$.

Вектор скорости точки С направлен параллельно векторам скоростей точек A и B (в ту же сторону).

Теорема о сложении ускорений – Ускорение любой точки плоской фигуры равна геометрической сумме ускорения полюса и ускорения этой точки вокруг полюса.

Скорости точек А и В связаны между собой соотношением:

$$\overline{v}_B = \overline{v}_A + \overline{v}_{BA} = \overline{v}_A + \overline{\omega} \times \overline{r}_{AB}.$$

Продифференцируем это соотношение по времени:

$$\frac{d\overline{v}_B}{dt} = \frac{d\overline{v}_A}{dt} + \frac{d\overline{v}_{BA}}{dt} = \overline{a}_A + \frac{d}{dt}(\overline{\omega} \times \overline{r}_{AB}).$$

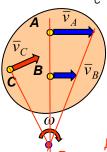
Второе слагаемое дифференцируем как произведение двух функций:

$$\frac{d}{dt}(\overline{\omega} \times \overline{r}_{AB}) = \frac{d\overline{\omega}}{dt} \times \overline{r}_{AB} + \overline{\omega} \times \frac{d\overline{r}_{AB}}{dt} = \overline{\varepsilon} \times \overline{r}_{AB} + \overline{\omega} \times \overline{v}_{BA}.$$

Получили сумму вращательного и осестремительного ускорений рассматриваемой точки относительно полюса. Таким образом, ускорение точки плоской фигуры:

$$\overline{a}_B = \overline{a}_A + \overline{a}_{BA}^{\text{BP}} + \overline{a}_{BA}^{\text{oc}} = \overline{a}_A + \overline{a}_{BA}.$$

Дано: \mathbf{v}_{A} , \mathbf{v}_{B} , $\mathbf{v}_{A} \parallel \mathbf{v}_{B}$, положения точек A, B, C. Найти: \mathbf{v}_{C}



- 1) МЦС находится на пересечении перпендикуляров к векторам $\mathbf{v}_{_{\!A}}$ и $\mathbf{v}_{_{\!B}}$. Эти перпендикуляры сливаются в одну линию.
- 2) Определяем положение МЦС $\omega = \frac{v_A}{AP} = \frac{v_B}{BP} = \frac{v_B}{BP}$ (проводим линию через концы векторов $\boldsymbol{v}_{_{\!A}}$ и $\boldsymbol{v}_{_{\!B}}$) и угловую скорость:

$$\omega = \frac{v_A}{AP} = \frac{v_B}{BP} = \frac{v_A - v_B}{AB}.$$

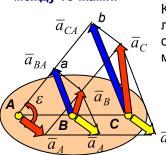
Дуговую стрелку угловой скорости изображаем в сторону векторов линейных скоростей $v_{_{A}}v_{_{B}}$.

3) Соединяем точку C с МЦС и определяем скорость этой точки:

$$v_C = \omega \cdot CP$$
.

 $v_C = \omega \cdot CP$. Вектор линейной скорости v_c направлен в сторону дуговой стрелки угловой скорости.

Следствие - Концы векторов ускорений точек плоской фигуры, лежащих на одной прямой, также лежат на одной прямой и делят ее на отрезки, пропорциональные расстояниям между точками.



Концы векторов ускорений точек a_{BA} и a_{CA} лежат на одной прямой Abc и делят ее на отрезки пропорциональные расстояниям между точками:

$$a_{BA} = \sqrt{\varepsilon^2 + \omega^4} AB,$$

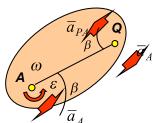
$$a_{CA} = \sqrt{\varepsilon^2 + \omega^4} AC.$$

Концы векторов ускорений полюса А, изображенных в точках В и С, лежат также лежат на одной прямой.

Нетрудно доказать из подобия треугольников, что концы векторов суммарных ускорений точек В и С также лежат на одной прямой, и делят эту прямую на части, пропорциональные расстояниям между точками.

Лекция 5 (продолжение 5.3)

Мгновенный центр ускорений (МЦУ) – При движении плоской фигуры в каждый момент времени существует точка, жестко связанная с плоской фигурой, ускорение которого в этот момент равна нулю.



Пусть известно ускорение одной из точек фигуры, угловая скорость и угловое ускорение вокруг этой точки:

Запишем векторное соотношение для ускорения некоторой точки Q согласно теоремы о сложении ускорений:

$$\overline{a_Q} = \overline{a}_A + \overline{\omega} \times \overline{r}_{AQ} + \overline{\varepsilon} \times \overline{v}_{QA} = \overline{a}_A + \overline{a}_{PA}.$$

Тогда получаем:

$$\overline{a}_{OA} = -\overline{a}_A$$
.

Зададим значение ускорения этой точки Q равной нулю:

Угол между вектором полного ускорения точки при вращении относительно центра равен:

$$\beta = arctg \frac{\varepsilon}{\omega^2}.$$

Т.е. ускорение искомой точки при вращении вокруг полюса должно быть равно по модулю ускорению точки А, параллельно этому ускорению и направлено в противоположную сторону.

Это позволяет найти положение МЦУ (точки Q), а именно: МЦУ должен находиться прямой, составляющей угол β к вектору ускорения точки А, проведенной в сторону углового ускорения, на расстоянии:

 $\beta = arctg \frac{\varepsilon}{\omega^2}.$

$$AQ = \frac{a_A}{\sqrt{\varepsilon^2 + \omega^4}}.$$

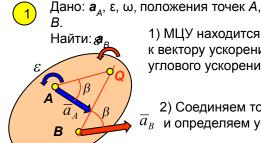
Если положение МЦУ найдено, ускорение любой точки плоской фигуры может быть легко определено посредством выбора полюса в МСУ . В этом случае векторное выражение теоремы о сложении ускорений вырождается в известную зависимость полного ускорения от расстояния до центра вращения:

$$\overline{a}_{B} = \overline{a}_{Q} + \overline{\varepsilon} \times \overline{r}_{QB} + \overline{\omega} \times \overline{v}_{BQ} = \overline{a}_{BQ}; \quad (\overline{a}_{Q} = 0); \quad a_{B} = \sqrt{\varepsilon^{2} + \omega^{4}} \cdot BQ;$$

 $\left| \overline{a}_{C} = \overline{a}_{Q} + \overline{\varepsilon} \times \overline{r}_{QC} + \overline{\omega} \times \overline{v}_{CQ} = \overline{a}_{CQ}; \quad (\overline{a}_{Q} = 0); \quad a_{C} = \sqrt{\varepsilon^{2} + \omega^{4}} \cdot CQ; \right|$

Таким образом, при определении ускорений точек плоской фигуры в данный момент времени можно считать, что тело совершает вращательное движение вокруг МЦУ.

Внимание: На самом деле в данный момент тело вращается вокруг МЦС, положение которого в общем случае не совпадает с положением МЦУ.



1) МЦУ находится на прямой, составляющей угол β к вектору ускорения точки А, проведенной в сторону

углового ускорения, на расстоянии:

$$AQ = \frac{a_A}{\sqrt{\varepsilon^2 + \omega^4}}.$$

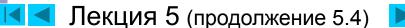
2) Соединяем точку В с МЦУ \overline{a}_B и определяем ускорение этой точки:

$$a_{R} = \sqrt{\varepsilon^{2} + \omega^{4}} QB.$$

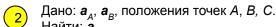
Если ε = 0 и ω ≠ 0, то β = 0 и $AQ = \frac{a_A}{\Omega^2}$. Ускорения всех точек будут направлены в точку Q (МЦУ).

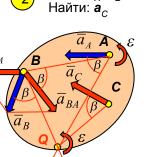
Если $\varepsilon \neq 0$ и $\omega = 0$, то $\beta = 90^{\circ}$ и $AQ = \frac{a_A}{\varepsilon}$. Ускорения всех точек

будут перпендикулярны отрезкам, соединяющим точки с МЦУ, и направлены в сторону углового ускорения.



Примеры использования МЦУ для определения ускорений точек плоской фигуры





1) Запишем теорему о сложении ускорений и найдем ускорение точки В во вращении вокруг полюса *A*:

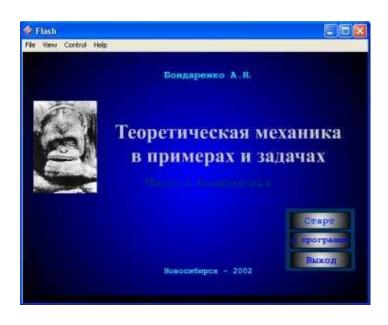
 $|\overline{a}_R = \overline{a}_A + \overline{a}_{RA}.|$

2) Определим угол β между вектором $\boldsymbol{a}_{\scriptscriptstyle BA}$ и прямой АВ и направление дуговой стрелки углового ускорения:

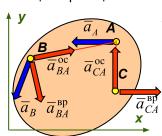
3) МЦУ находится на пересечении прямых, повернутых на угол β от векторов ускорений точек A и B в сторону дуговой стрелки углового ускорения:

4) Соединяем точку С с МЦУ и определяем ускорение этой точки из одного из соотношений: и направляем вектор ускорения под углом β к отрезку QC в сторону дуговой стрелки углового ускорения.

$$\frac{a_A}{AQ} = \frac{a_B}{BQ} = \frac{a_C}{CQ}.$$



Использование МЦУ связано с геометрическим построениями и решениями косоугольных треугольников, что не совсем удобно в общем случае. Можно решить эту задачу алгебраически с помощью проекций:



1) Запишем теорему о сложении ускорений для точек В и А:

$$\overline{a}_B=\overline{a}_A+\overline{a}_{BA}^{\,\mathrm{BP}}+\overline{a}_{BA}^{\,\mathrm{oc}}.$$
 и изобразим компоненты ускорений:

2) Спроецируем уравнение на координатные оси:

$$\begin{aligned} a_{Bx} &= a_{Ax} + a_{BAx}^{\mathrm{BP}} + a_{BAx}^{\mathrm{oc}} = a_{Ax} + \varepsilon AB \cos(\overline{a}_{BA}^{\mathrm{BP}}, x) + \omega^2 AB \cos(\overline{a}_{BA}^{\mathrm{oc}}, x), \\ a_{By} &= a_{Ay} + a_{BAy}^{\mathrm{BP}} + a_{BAy}^{\mathrm{oc}} = a_{Ay} + \varepsilon AB \cos(\overline{a}_{BA}^{\mathrm{BP}}, y) + \omega^2 AB \cos(\overline{a}_{BA}^{\mathrm{oc}}, y). \end{aligned}$$

- 3) Из этих уравнений можно найти угловые скорость и ускорение.
- 4) Запишем теорему о сложении ускорений для точек С и А: и изобразим компоненты ускорений: $|\overline{a}_C = \overline{a}_A + \overline{a}_{CA}^{\text{BP}} + \overline{a}_{CA}^{\text{oc}}|$
- 5) Спроецируем уравнение на координатные оси:

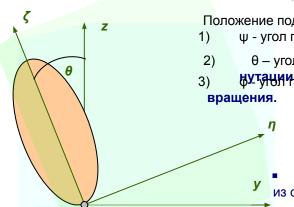
$$\begin{split} a_{Cx} &= a_{Cx} + a_{CAx}^{\mathrm{BP}} + a_{CAx}^{\mathrm{oc}} = a_{Cx} + \varepsilon AC\cos(\overline{a}_{CA}^{\mathrm{BP}}, x) + \omega^2 AC\cos(\overline{a}_{CA}^{\mathrm{oc}}, x), \\ a_{Cy} &= a_{Cy} + a_{CAy}^{\mathrm{BP}} + a_{CAy}^{\mathrm{oc}} = a_{Cy} + \varepsilon AC\cos(\overline{a}_{CA}^{\mathrm{BP}}, y) + \omega^2 AC\cos(\overline{a}_{CA}^{\mathrm{oc}}, y). \end{split}$$

Пример решения — См. задачу М.18.13 "Теоретическая механика в примерах и задачах. Кинематика" (электронное пособие автора www.miit.ru/institut/ipss/faculties/trm/main.htm),

🔼 Лекция 6 📐

- Сферическое движение твердого тела одна из точек тела остается неподвижной во время движения. Остальные точки движутся по сферическим поверхностям, центры которых совпадают с неподвижной точкой.
- Углы Эйлера используются для описания сферического движения твердого тела посредством ввода двух системы координат:

Oxyz – неподвижная система координат с началом в неподвижной точке, $O\xi\eta\zeta$ - подвижная система координат, жестко связанная с телом, с началом в той же точке.



Положение подвижной системы координат может быть однозначно задано тремя углами:

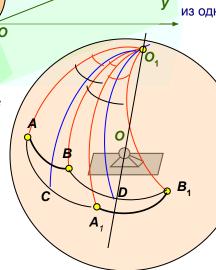
- 1) ψ угол поворота системы Οξηζ вокруг оси z **угол прецессии**;
 - θ угол поворота системы Οξηζ вокруг нового положения горизонтальной оси х (*OJ*) **угол**
- 3) φυτημί ο ворота системы Οξηζ вокруг нового положения вертикальной оси z (Οζ) **угол собственного** вращения.

Уравнения сферического движения твердого тела:

 $\theta = \theta(t);$

 $\varphi = \varphi(t)$.

■ **Теорема Эйлера** – Твердое тело, имеющее одну неподвижную точку, можно переместить из одного положения в другое одним поворотом вокруг некоторой оси, проходящей через эту точку.



Рассмотрим дугу большого круга AB, находящейся на сферической поверхности. **Дуга большого круга** – дуга наименьшей кривизны на поверхности (часть окружности, полученной сечением плоскости, проходящей через центр). Далее будет подразумеваться, что все дуги есть дуги большого круга.

Пусть $\cup AB$ переместилась в положение $\cup A_1B_1$. Проведем дуги $\cup AA_1$ и $\cup BB_1$. Из середин C и D дуг $\cup AA_1$ и $\cup BB_1$ проведем дуги, перпендикулярные к дугам $\cup AA_1$ и Точка пересечения дуг $\cup CO_1$ и $\cup DO_1$ является неподвижной и определяет положение оси вращения. Эту точку соединим дугами с концами дуг $\cup AA_1$ и $\cup BB_1$.

Полученные криволинейные треугольники $\triangle AO_1B$ и $\triangle A_1O_1B_1$ равны по равенству сторон и углы $\angle AO_1B = \angle A_1O_1B_1$.

Если к каждому из этих углов добавить один и тот же $\angle BO_1A_1$, то полученные углы $\angle AO_1A_1$ и $\angle BO_1B_1$ будут также равны между собой и будут являться углом поворота всех точек тела вокруг оси OO_1 .

Точки A и B при перемещении в положение A_1 , B_1 , в общем случае движутся не обязательно по дугам большого круга. За малый промежуток времени Δt переход точек из одного положения в другое происходит поворотом тела вокруг некоторой оси вращения на угол $\Delta \varphi$. При устремлении $\Delta t \to 0$ ось вращения занимает предельное положение и называется **мгновенной осью вращения тела в данный момент**.

Лекция 6 (продолжение 6.2)

Угловая скорость сферического движения твердого тела – вектор, направленный вдоль мгновенной оси вращения, модуль которого равен:

$$\omega =_{\Delta t} \underline{\lim}_{0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt}.$$

Угловое ускорение сферического движения твердого тела – характеризует изменение вектора

угловой скорости:

$$\begin{bmatrix} t & \Rightarrow \overline{\omega}; \\ t_1 = t + \Delta t \Rightarrow \overline{\omega}_1 = \overline{\omega} + \Delta \overline{\omega}; \end{bmatrix} \quad \boxed{\frac{\Delta \overline{\omega}}{\Delta t}} = \overline{\varepsilon}_{\rm cp}$$

$$\frac{\Delta \overline{\omega}}{\Delta t} = \overline{\varepsilon}_{\rm cp}$$

- среднее угловое ускорение в интервале времени Δt ,
- **Модуль вращательного ускорения** равен: $a_{\rm вp}^E = \varepsilon \cdot h^E$, где h^E длина перпендикуляра, опущенного на ось меновенного ускорения E.

Вектор вращательного ускорения направлен перпендикулярно радиусу вращения (h^E) в сторону дуговой стрелки углового ускорения.

Модуль осестремительного ускорения равен: $a_{
m oc}^{\it Q}=\omega$, гд $dt_{
m oc}^{\it Q}$ – длина перпендикуляра, опущенного на мгновенную ось вращения Ω .

Вектор осестремительного ускорения направлен по радиусу вращения (h^{Ω}) к мгновенной оси вращения.

Модуль полного ускорения равен:

$$a = \sqrt{(a_{\rm Bp}^E)^2 + (a_{\rm oc}^\Omega)^2 + 2a_{\rm Bp}^E a_{\rm oc}^\Omega \cos(\overline{a}_{\rm Bp}^E, \overline{a}_{\rm oc}^\Omega)}$$

Скорость точки твердого тела при сферическом движении – определяется как вращательная скорость

вокруг мгновенной оси:

Проекции скоростей (формулы Эйлера):

$$v_{x} = (\omega_{y}z - \omega_{z}y);$$

$$v_{y} = (\omega_{z}x - \omega_{x}z);$$

$$v_{z} = (\omega_{x}y - \omega_{y}x).$$

$$\overline{v} = \overline{\omega} \times \overline{r} \quad v = \omega \cdot r \sin(\overline{\omega}, \overline{v}) = \omega \cdot h^{\Omega}.$$

$$\overline{v} = \overline{\omega} \times \overline{r} \quad \overline{v} = \overline{\omega} \times \overline{r} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \omega_{x} & \omega_{y} & \omega_{z} \\ v_{y} = (\omega_{z}x - \omega_{x}z); \end{vmatrix} = +(\omega_{z}x - \omega_{z}z)\overline{j} + (\omega_{x}y - \omega_{y}x)\overline{k}$$

Проекции скоростей на подвижные оси ξ, η, ζ имеют аналогичный вид.

Мгновенная ось вращения в данное мгновение – геометрическое место точек с нулевой скоростью.

Уравнение мгновенной оси получается приравниванием проекций скоростей нулю:

Ускорение точки твердого тела при сферическом движении:

$$\overline{a} = \frac{d\overline{v}}{dt} = \frac{d}{dt}(\overline{\omega} \times \overline{r}) = \frac{d\omega}{dt} \times \overline{r} + \overline{\omega} \times \frac{d\overline{r}}{dt} = \overline{\varepsilon} \times \overline{r} + \overline{\omega} \times \overline{v} = \overline{a}_{\text{Bp}}^E + \overline{a}_{\text{oc}}^\Omega.$$

$$\overline{a} = \overline{a}_{\rm sp}^E + \overline{a}_{\rm oc}^\Omega$$

$$\overline{a}_{\rm sp}^E = \overline{\varepsilon} \times \overline{r}$$

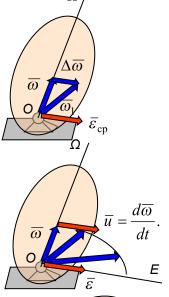
$$\overline{a} = \overline{a}_{\rm Bp}^E + \overline{a}_{\rm oc}^\Omega \qquad \overline{a}_{\rm Bp}^E = \overline{\varepsilon} \times \overline{r} \qquad \overline{a}_{\rm oc}^\Omega = \overline{\omega} \times (\overline{\omega} \times \overline{r})$$

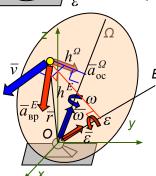
$$v_{x} = (\omega_{y}z - \omega_{z}y) = 0; \quad \omega_{y}z = \omega_{z}y;$$

$$v_{y} = (\omega_{z}x - \omega_{x}z) = 0; \quad \omega_{z}x = \omega_{x}z;$$

$$v_{z} = (\omega_{x}y - \omega_{y}x) = 0. \quad \omega_{z}y = \omega_{y}x.$$

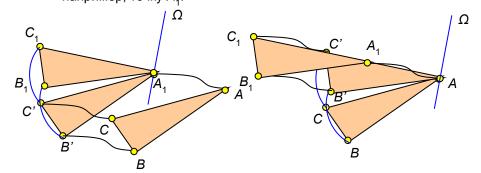
$$\frac{x}{\omega_{x}} = \frac{y}{\omega_{y}} = \frac{x}{\omega_{z}}$$





Лекция 6 (продолжение 6.3)

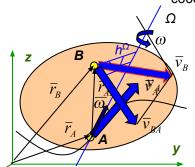
- Общий случай движения твердого тела Положение тела в пространстве однозначно определяется положением трех его точек, не лежащих на одной прямой. По трем точкам можно построить треугольник, который и будет далее представлять тело в пространстве.
- Разложение движения свободного твердого тела Как и в случае плоского движения существует бесчисленное множество способов представления движения свободного тела в виде совокупности двух, более простых движений. Например, можно перевести тело из исходного положение, обозначенное треугольником ΔABC , в другое положение, соответствующее треугольнику $\Delta A_1B_1C_1$, поступательным перемещением в положение $\Delta A_{A}B'C'$, а затем поворотом его вокруг некоторой оси, проходящей через точку, выбранной в качестве полюса, например, точку A_{\downarrow} :



Скорость точки свободного тела – Скорость любой точки тела равна геометрической сумме скорости полюса и скорости этой точки в ее сферическом движении вокруг полюса.

> Радиусы-векторы точек А и В связаны между собой соотношением: $\overline{r}_{\!\scriptscriptstyle R}(t) = \overline{r}_{\!\scriptscriptstyle A}(t) + \overline{r}_{\!\scriptscriptstyle AB}(t).$

$$\bar{r}_B(t) = \bar{r}_A(t) + \bar{r}_{AB}(t).$$



Продифференцируем это соотношение:

 $\overline{v}_{\scriptscriptstyle R}$ Второе слагаемое есть скорость точки ${\it B}$ во сферическом движении вокруг полюса А:

$$\overline{v}_{AB}^{\Omega}(t) = \overline{\omega}(t) \times \overline{r}_{AB}(t); \quad |\overline{r}_{AB}| = const.$$

$$\overline{v}_B = \overline{v}_A + \overline{v}_{BA}^{\Omega} = \overline{v}_A + \overline{\omega} \times \overline{r}_{AB}.$$

Полученное соотношение полностью совпадает с теоремой о слож

лишь в том, что используется не центр вращения, а ось мгновенного вращения Ω .

Отсюда имеют место и аналогично доказываются следствия о равенстве проекций скоростей точек на ось, проходящих через эти точки, и о пропорциональности отрезков линии, проходящей через концы векторов скоростей.

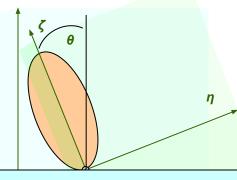
Или, напротив, вначале повернуть треугольник ΔABC вокруг некоторой оси, проходящей через точку, выбранной в качестве полюса, например, точку A, чтобы стороны треугольника ΔABC стали параллельными сторонам треугольника $\Delta A_1 B_1 C_1$, а затем перевести треугольник $\Delta AB'C$ поступательным движением в положение $\Delta A_1 B_1 C_1$:

Таким образом, движение свободного тела можно представить как совокупность поступательного движения и сферического движения вокруг некоторой точки, принадлежащей телу, выбранной в качестве полюса:

Уравнения движения свободного тела:

$$x_A = x_A(t);$$
 $\psi = \psi(t);$
 $y_A = y_A(t);$ $\theta = \theta(t);$
 $z_A = z_A(t);$ $\varphi = \varphi(t).$

$$\frac{d\overline{r}_B(t)}{dt} = \frac{d\overline{r}_A(t)}{dt} + \frac{d\overline{r}_{AB}(t)}{dt}.$$



В дополнение к этим двум следствиям из теоремы о сложении вытекает третье следствие:

Скорости точек свободного тела, лежащих на прямой, параллельной мгновенной оси, геометрически равны. Справедливость утверждения следует из равенства скоростей этих точек во вращении вокруг мгновенной оси.

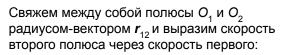
Лекция 6 (продолжение 6.4)

 E_2

Независимость векторов угловой скорости и углового ускорения от выбор полюса. Запишем теорему о сложении скоростей

для одной и тоже точки A с использованием различных полюсов O_1 и O_2 :

$$\overline{v}_A = \overline{v}_{O1} + \overline{\omega}_1 \times \overline{r}_1;$$
 (a)



$$\overline{r}_1 = \overline{r}_{12} + \overline{r}_2;$$

$$\overline{r}_1 = \overline{r}_{12} + \overline{r}_2; \qquad \qquad \left[\overline{v}_A = \overline{v}_{O2} + \overline{\omega}_2 \times \overline{r}_2; \text{ (b)} \right]$$

Приравняем правые части (а) и (с), и учтем соотношение между радиусами-векторами:

$$\overline{\overline{v}_{O1}} + \overline{\omega}_1 \times \overline{r}_1 = \overline{v}_{O1} + \overline{\omega}_1 \times (\overline{r}_1 - \overline{r}_2) + \overline{\omega}_2 \times \overline{r}_2.$$

После некоторых сокращений и преобразований получаем:
$$\overline{\overline{\omega}_{l}} \times \overline{r_{l}} = \overline{\overline{\omega}_{l}} \times \overline{r_{l}} - \overline{\omega}_{l} \times \overline{r_{2}} + \overline{\omega}_{2} \times \overline{r_{2}}$$
. $\overline{\overline{\omega}_{l}} \times \overline{r_{2}} = \overline{\omega}_{2} \times \overline{r_{2}}$.

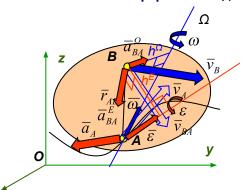
Отсюда следует равенство угловых скоростей:

$$\overline{\omega}_1 = \overline{\omega}_2$$
.

Продифференцируем полученное равенство:
$$\frac{d\overline{\omega}_1}{dt} = \frac{d\overline{\omega}_2}{dt}$$
, $\overline{\overline{\varepsilon}_1} = \overline{\varepsilon}_2$.

Итак, векторы угловой скорости и углового ускорения не зависят от выбора полюса. Выбор полюса влияет лишь на величину вектора скорости поступательного движения при разложении движения свободного тела.

Ускорение точки свободного тела – Ускорение любой точки тела равна геометрической сумме ускорения полюса и ускорения этой точки в ее сферическом движении вокруг полюса.



 $\overline{\nu}_{A}$

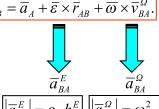
Запишем теорему о сложении скоростей:

 $\overline{v}_R = \overline{v}_A + \overline{\omega} \times \overline{r}_{AR}$.

$$\frac{d\overline{v}_{B}}{dt} = \frac{d\overline{v}_{A}}{dt} + \frac{d}{dt}(\overline{\omega} \times \overline{r}_{AB}) = \frac{d\overline{v}_{A}}{dt} + \frac{d\overline{\omega}}{dt} \times \overline{r}_{AB} + \overline{\omega} \times \frac{d\overline{r}_{AB}}{dt}.$$

Или $\overline{a}_{B} = \overline{a}_{A} + \overline{\varepsilon} \times \overline{r}_{AB} + \overline{\omega} \times \overline{v}_{BA}^{\Omega}$.

Здесь вектор a_{Δ} – ускорение полюса.



Второе слагаемое – вращательное ускорение точки В в сферическом движении относительно полюса А.

Третье слагаемое – **осестремительное ускорение** точки *В* в сферическом движении относительно полюса А.

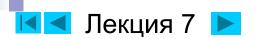
Геометрическая сумма вращательного и осестремительного ускорений точки во сферическом движении

есть полное ускорение точки в сферическом движении вокруг полюса:

$$\overline{a}_{BA}^{c\phi} = \overline{a}_{BA}^E + \overline{a}_{BA}^\Omega$$

Таким образом:

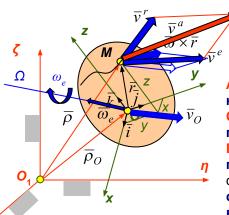
$$\overline{a}_{A} = \overline{a}_{B} + \overline{a}_{BA}^{c\phi}.$$



Сложное движение точки – такое движение, при котором точка участвует одновременно в двух или нескольких движениях.

Примеры сложного движения точки (тела): лодка, переплывающая реку; человек, идущий по движущемуся эскалатору; камень подвижной кулисы, поршень качающегося цилиндра; шары центробежного регулятора Уатта.

Для описания сложного движения точки или для представления движения в виде сложного используются **неподвижная система отсчета** $O_1\xi\eta\zeta$, связанная с каким-либо условно неподвижным телом, например, с Землей, и подвижная система отсчета Охух, связанная с каким-либо движущимся телом.



Абсолютное движение (a) - движение точки, рассматриваемое относительно неподвижной системы отсчета. Относительное движение (r) - движение точки, рассматриваемое относительно подвижной системы отсчета.

Переносное движение (е) - движение подвижной системы отсчета, рассматриваемое относительно неподвижной системы отсчета.

Абсолютная скорость (ускорение) точки v^a (a^a) - скорость (ускорение) точки, вычисленная относительно неподвижной системы отсчета.

Относительная скорость (ускорение) точки v^r (a^r) – скорость (ускорение) точки, вычисленная относительно подвижной системы отсчета.

Переносная скорость (ускорение) точки v^e (a^e) — скорость (ускорение) точки,

принадлежащей подвижной системе координат или твердому телу, с которым жестко связана подвижная система координат,

совпадающей с рассматриваемой движущейся точкой в данный момент времени и вычисленная относительно неподвижной системы отсчета.

Теорема о сложении скоростей – абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей точки.

В любой момент времени справедливо соотношение:

$$\overline{\rho} = \overline{\rho}_O + \overline{r} = \overline{\rho}_O + x\overline{i} + y\overline{j} + z\overline{k}.$$

Продифференцируем это соотношение по времени имея в виду, орты і, ј, к изменяют свое направление в общем случае движения свободного тела, с которым связана подвижная система координат:

Здесь первое слагаемое (v_o) - скорость полюса O; следующие три – относительная скорость точки (v').

Для последних трех слагаемых следует определить производные по времени от ортов i, j, k:

$$\frac{d\bar{i}}{dt} = (\overline{\omega}_e \times \bar{i});$$

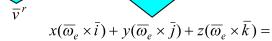
Таким образом, с учетом того, что производная по времени радиуса-вектора р есть абсолютная скорость, получаем:

$$\overline{v}^a = \overline{v}^r + \overline{v}^e.$$

Модуль вектора абсолютной скорости:

$$\left|\overline{v}^{a}\right| = \sqrt{\left|\overline{v}^{r}\right|^{2} + \left|\overline{v}^{e}\right|^{2} + 2\left|\overline{v}^{r}\right|\left|\overline{v}^{e}\right| \sin(\overline{v}^{r}, \overline{v}^{e})}.$$

Подставим векторные



произведения

в последние три слагаемые:

$$= \overline{\omega}_e \times (x\overline{i} + y\overline{j} + z\overline{k}) = \overline{\omega}_e \times \overline{r}.$$

Сумма первого и последнего слагаемого

- скорость точки свободного тела есть переносная скорость точки (v^e):

$$\overline{v}^e = \overline{v}_O + \overline{\omega}_e \times \overline{r}.$$

Лекция 7 (продолжение 7.2)

Теорема о сложении ускорений (теорема Кориолиса) – абсолютное ускорение точки равно геометрической сумме относительного, переносного и кориолисова ускорений точки.

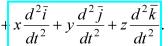
Было получено ранее соотношение для скорости:

$$\frac{d\rho}{dt} = \frac{d\rho_O}{dt} + \sqrt{1} + \sqrt{1} + \sqrt{1} + x\frac{di}{dt} + y\frac{dj}{dt} + z\frac{dk}{dt}$$

Продифференцируем это соотношение по времени еще раз:

$$\frac{d^2 \overline{\rho}}{dt^2} = \frac{d^2 \overline{\rho}_O}{dt^2}$$

$$\frac{d^{2}\overline{\rho}_{O}}{dt^{2}} + \overline{\underline{w}} + \overline{\underline{w}} + \overline{\underline{w}} + \overline{\underline{w}} + \overline{\underline{w}} + \overline{\underline{w}} + \underline{\underline{v}} \frac{d\overline{i}}{dt} + \underline{$$



Здесь первое слагаемое (a_0) - ускорение полюса O; следующие три – относительное ускорение точки (а').

по времени

координат i, j, k:

В оставшихся шести

слагаемых сложим

одинаковые члены,

подставим векторные

ортов и сгруппируем:

произведения для первых

производных по времени от

от ортов подвижной системы

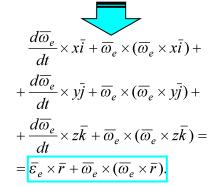
Для последних трех слагаемых следует определить вторые производные dводные $\frac{d}{dt^2} = \frac{d}{dt} (\overline{\omega}_e \times \overline{i}) = \frac{d\overline{\omega}_e}{dt} \times \overline{i} + \overline{\omega}_e \times (\overline{\omega}_e \times \overline{i});$

$$\frac{d^2 \bar{j}}{dt^2} = \frac{d}{dt} (\overline{\omega}_e \times \bar{j}) = \frac{d\overline{\omega}_e}{dt} \times \bar{j} + \overline{\omega}_e \times (\overline{\omega}_e \times \bar{j});$$

$$\left| \frac{d^2 \overline{k}}{dt^2} = \frac{d}{dt} (\overline{\omega}_e \times \overline{k}) = \frac{d\overline{\omega}_e}{dt} \times \overline{k} + \overline{\omega}_e \times (\overline{\omega}_e \times \overline{k}). \right|$$

Подставим эти выражения в последние три слагаемые и сгруппируем:

Сумма первого и полученных двух слагаемых – ускорение точки свободного тела есть переносное



$$\overline{a}^e = \overline{a}_O + \overline{\varepsilon}_e \times \overline{r} + \overline{\omega}_e \times (\overline{\omega}_e \times \overline{r}).$$

Полученная компонента ускорения представляет собой кориолисово ускорение (a^c) : $\overline{a}^c = 2(\overline{\omega}_a \times \overline{v}^r)$

ускорение точки (a^e): $2\left|\underbrace{x}\frac{di}{dt} + \underbrace{y}\frac{dj}{dt} + \underbrace{z}\frac{dk}{dt}\right| = 2\left[\underbrace{x}(\overline{\omega}_e \times \overline{i}) + \underbrace{y}(\overline{\omega}_e \times \overline{j}) + \underbrace{z}(\overline{\omega}_e \times \overline{k})\right] = 2(\overline{\omega}_e \times \overline{v}^r).$

Таким образом, с учетом того, что вторая производная по времени радиуса-вектора ρ есть абсолютное ускорение, получаем:

$$\overline{a}^{a} = \overline{a}^{r} + \overline{a}^{e} + \overline{a}^{c}.$$

Модуль вектора кориолисова ускорения: Ускорение Кориолиса обращается в ноль в двух случаях:

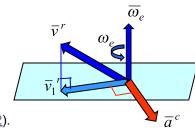
$$\left| \overline{a}^c \right| = 2\omega_e v^r \sin(\overline{\omega}_e, \overline{v}^r).$$

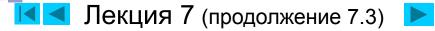
- Угловая скорость переносного движения равна 0 (поступательное переносное движение).
- Вектор угловой скорости параллелен вектору относительной скорости (синус угла между векторами обращается в 0).
 - Спроецировать вектор относительной скорости на плоскость, перпендикулярную вектору угловой скорости.

Направление вектора кориолисова ускорения: Определяется по одному

из трех правил:

- По определению векторного произведения (см. <u>л.3.2</u>).
- 2. По правилу правой руки (см. л.3.2).
- 3. По правилу Жуковского:
 - б) Повернуть проекцию вектора относительной скорости

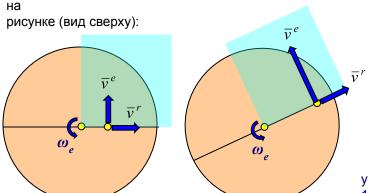




Причины возникновения ускорения Кориолиса: Формально ускорение Кориолиса было выведено группировкой слагаемых произведений, содержащих проекции относительной скорости и производные по времени от ортов подвижной системы координат. При этом ранее было получено удвоенное число таких слагаемых.

Для прояснения физических причин возникновения ускорения Кориолиса рассмотрим качественный пример, в котором специально будем полагать постоянными вектор относительной скорости (в подвижной системе координат) и вектор угловой переносной скорости (вращения подвижной системы координат относительно неподвижной оси):

Пусть в некоторый момент времени положение точки и вектора относительной и переносной скоростей таковы, как они изображены



Через некоторое время точка удалится от оси вращения и тело повернется на некоторый угол.

В результате:

- относительная скорость изменится по направлению из-за наличия переносной угловой скорости и
- 2) переносная линейная скорость изменится по величине из-за наличия относительной скорости, изменяющей расстояние точки до оси вращения.

Таким образом, можно считать что существует две причины возникновения ускорения Кориолиса:

- 1) переносная угловая скорость влияет на относительную скорость, а
- 2) относительная скорость в свою очередь влияет на переносную линейную скорость. Возможно, это поможет запомнить коэффициент, равный двум, в формуле,

определяющей ускорение Кориолиса.





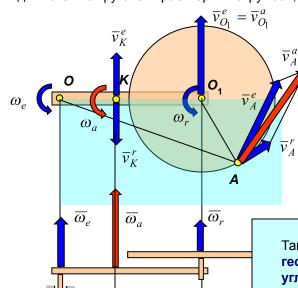
- Сложное движение твердого тела такое движение, при котором тело участвует одновременно в двух или нескольких движениях. Все определения, касающиеся составляющих движения, данные для сложного движения точки, остаются справедливыми для твердых тел. Кинематика сложного движения точки используется здесь для получения новых соотношений, описывающих сложное движение твердого тела.
- Сложение поступательных движений твердого тела При поступательных движениях все точки твердого тела имеют одинаковые скорости, что позволяет использовать теорему о сложении скоростей точки для сложного движения: $|\overline{v}^a| = \overline{v}^r + \overline{v}^e$ Таким образом, абсолютная скорость тела, равная скорости одной из точек этого тела,

$$\overline{v}^a = \overline{v}^r + \overline{v}^e.$$

Сложение вращательных движений твердого тела – здесь рассмотрим два случая различного положения осей вращения: оси вращений параллельны и оси вращений пересекаются.

равна геометрической сумме переносной и относительной скоростей этого тела.

Оси вращений параллельны – диск вращается относительно своей оси, проходящей через точку О₁, с угловой скоростью ω_r , ось диска движется по круговой траектории вокруг оси, проходящей через неподвижную точку О, с угловой скоростью ω_{s} :



В случае противоположных по направл

угловым скоростям, но только внешни

скорости). Тогда:

Произвольная точка А, принадлежащая диску, совершает сложное движение (движется по круговой траектории в подвижной плоскости, жестко связанной с кривошипом ОО₁) и абсолютная скорость этой точки определяется выражением: $|\overline{v}_A^a = \overline{v}_A^r + \overline{v}_A^e$.

Задачу определения скоростей любой из точек диска можно упростить, если найти положение мгновенного центра вращения (точку, скорость которой в данный момент равна нулю):

$$\overline{\overline{v}_K^a} = \overline{v}_K^r + \overline{v}_K^e = 0.$$
 Отсюда: $\overline{\overline{v}_K^e} = -\overline{v}_K^r.$

Это означает, что точка K лежит на отрезке прямой ОО, и делит его на части, обратно пропорциональные угловым скоростям:

$$v_K^e = v_K^r, \quad \omega_e O K = \omega_r O_1 K$$

$$\frac{\omega_e}{\omega_r} = \frac{O_1 K}{O K}$$

Таким образом, абсолютная угловая скорость равна геометрической сумме относительной и переносной угловых скоростей.

Имеется полная аналогия между сложением векторов угловых скоростей и сложением двух параллельных сил. При сложении таких сил равнодействующая приложена в точке, делящей расстояние между силами на отрезки, обратно пропорциональные силам.

точку О1, которая не участвует в (в переносном движении и в

вы:
$$v_{O_1}^e = v_{O_1}^a$$
, $\omega_e O O_1 = \omega_a K O_1$.

ыразим через О₁*К*:

$$KO_1$$
. Отсюда: $\omega_a = \omega_e + \omega_r$.

одить так же обратно пропорционально со стороны большего вектора угловой

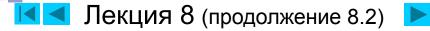
$$\omega_a = \omega_e - \omega_r$$
.

Оба соотношения можно объединить одним векторным соотношением:

 Q_r

 $OO_1 = KO_1$ M-aff(0)

$$\overline{\omega_a} = \overline{\omega}_e + \overline{\omega}_r.$$

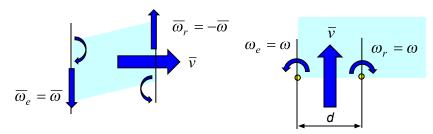


Пара вращений – При сложении двух параллельных сил, равных по величине и противоположно направленных между собой равнодействующая этих сил обращается в ноль (система таких сил не приводится к равнодействующей) и эти силы образуют качественно новую простейшую систему, называемой парой сил. При этом действие пары сил характеризуется моментом пары.

Совершенно аналогично при сложении двух параллельных векторов угловых скоростей, равных по величине и противоположно направленных между собой, называемых парой вращений, результирующая угловая скорость обращается в ноль. В результате получается поступательное

движение, скорость которого определяется величиной момента пары вращений:

 $|\overline{v} = m(\overline{\omega}, -\overline{\omega})|$



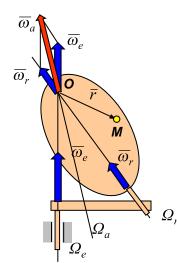
Таким образом, два вращения с угловыми скоростями, равными по величине и противоположными по направлению, могут быть заменены одним поступательным движением.

Точно также возможна и обратная процедура – представление поступательного движения в виде пары вращений.

Вектор скорости поступательного движения твердого тела является свободным вектором (может перемещаться параллельно самому себе) в то время как векторы угловой скорости являются скользящими векторами, которые могут перемещаться только по линии действия.

Сложение вращательных движений твердого тела

в случае пересечения осей вращений – тело вращается с угловой скоростью $\boldsymbol{\omega}_r$ относительно своей оси, проходящей через точку пересечения с другой осью вращения О. Относительно второй оси первая ось вращается с угловой скоростью ω_{a} :



Поскольку точка пересечения осей вращения имеет нулевую скорость, то принимая ее за неподвижную точку в пространстве, вычислим скорость произвольной точки M по теореме о сложении скоростей:

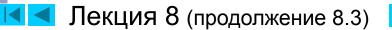
$$\overline{v}_M^a = \overline{v}_M^r + \overline{v}_M^e = (\overline{\omega}_r \times \overline{r}) + (\overline{\omega}_e \times \overline{r}) = (\overline{\omega}_r + \overline{\omega}_e) \times \overline{r}.$$

Векторная сумма угловых скоростей, полученная в скобках, представляет собой результирующую угловую скорость, определяющую единственное вращение тела вокруг некоторой мгновенной оси (см. сферическое движение), которая может рассматриваться как абсолютная угловая скорость: $\overline{v}_M^a = (\overline{\omega}_r + \overline{\omega}_e) \times \overline{r} = \overline{\omega}_a \times \overline{r}.$

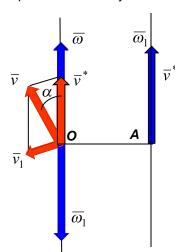
Таким образом, абсолютная угловая скорость равна геометрической сумме относительной и переносной угловых скоростей:

 $|\overline{\omega}_a = \overline{\omega}_e + \overline{\omega}_r.|$

При сложении вращательных движений более двух результирующий вектор угловой скорости равен геометрической сумме векторов всех угловых скоростей, участвующих в сложном движении: $|\overline{\omega} = \sum \overline{\omega}_i$



Сложение поступательного и вращательного движения твердого тела – пусть тело участвует во вращательном движении с угловой скоростью ω и поступательном движении со скоростью \mathbf{v} . Угол α между векторами угловой скорости и поступательной скорости произвольный.



Разложим вектор скорости поступательного движения на два взаимно перпендикулярных вектора так, чтобы один совпал с вектором угловой скорости:

 $v^* = v \cos \alpha;$ $v_1 = v \sin \alpha$.

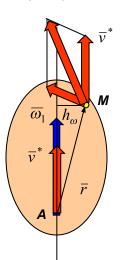
Вектор скорости \mathbf{v}_{1} представим в виде пары вращений с угловыми скоростями, равными заданной угловой скорости вращательного движения: $|\overline{v}_1 = \overline{m}(\overline{\omega}_1, -\overline{\omega}_1), \quad \overline{\omega}_1 = \overline{\omega}.|$

Расстояние ОА находится из равенства скорости моменту пары вращений:

Вектор оставшейся поступательной скорости v^* , как свободный вектор перенесем в точку A, а два вектора угловых скоростей, изображенные в точке О, можно удалить, поскольку они равны по величине, направлены по одной прямой в противоположные стороны: $\overline{\omega} + \overline{\omega}_1 = \overline{\omega} + (-\overline{\omega}) = 0$

Таким образом, получили вращение с заданной угловой скоростью ω вокруг оси, проходящей через точку A, и поступательное движение со скоростью v^* . Такая комбинация более не может быть упрощена и представляет собой кинематический винт, реализующий винтовое движение твердого тела. Ось, проходящая через точку А, вдоль которой направлен вектор угловой скорости, называется мгновенной винтовой осью.

Скорость точки твердого тела при винтовом движении – пусть тело участвует во вращательном движении с угловой скоростью ω_{\bullet} , которое примем за относительное движение, и поступательном движении со скоростью v^* , которое примем за переносное движение.



$$\overline{v}^r = \overline{\omega}_1 \times \overline{r}.$$

$$\overline{\overline{v}^e} = \overline{v}^*.$$

$$\overline{v}^a = \overline{v}^e + \overline{v}^r = \overline{v}^* + \overline{c}$$

Абсолютная скорость точки *M*:
$$\overline{v}^a = \overline{v}^e + \overline{v}^r = \overline{v}^* + \overline{\omega}_1 \times \overline{r}$$
. $\left| \overline{v}^a \right| = \sqrt{(v^*)^2 + (\omega_1 h_\omega)^2}$.

Точка M движется по спиральной траектории делая один оборот за время T:

$$T = \frac{2\pi}{\omega_1}.$$

За время T точка M перемещается по направлению переносной скорости на величину h (шаг винта): $h = v^*T = v^*\frac{2\pi}{2}$.

Отношение поступательной скорости с угловой скорости является характеристикой винтового движения и называется параметром винта:

$$p = \frac{v^*}{\omega_1}.$$

С использованием параметра винта шаг винта:

$$h=2\pi\cdot p.$$

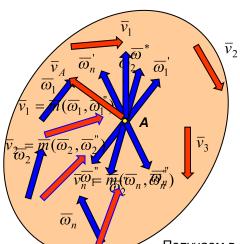
Модуль абсолютной скорости точки M с использованием параметра винта: $\left| \overline{v}^{\,a} \right| = \sqrt{\left(\omega_1 p \right)^2 + \left(\omega_1 h_{\omega} \right)^2} = \omega_1 \sqrt{p^2 + h_{\omega}^2}$

$$\left|\overline{v}^{a}\right| = \sqrt{\left(\omega_{1}p\right)^{2} + \left(\omega_{1}h_{\omega}\right)^{2}} = \omega_{1}\sqrt{p^{2} + h_{\omega}^{2}}$$

В частном случае, при $\alpha = 90^{\circ}$ (вектор поступательной скорости перпендикулярен вектору угловой скорости) движение приводится к одному вращению вокруг оси, проходящей через точку А: $uv^* = v\cos\alpha = 0$

Лекция 8 (продолжение 8.4)

■ Общий случай сложного движения твердого тела – пусть тело участвует в п вращательных движениях и т поступательных движениях.



Выберем полюс А и приложим в этой точке вектора угловых скоростей:

Получили совокупность пар вращений

$$(\overline{\omega_1}, \overline{\omega_1}^");$$
 и совокупность векторов угловых скоростей, $(\overline{m_{\rm g}}{
m pec_{\rm ge}})$ кающихся в одной точке. $(\overline{\omega_n}, \overline{\omega_n}^")$

Совокупность вращений можно заменить одним вращением:

$$\overline{\omega}^* = \sum_{1}^{n} \overline{\omega}_i' = \sum_{1}^{n} \overline{\omega}_i.$$

Каждую пару вращений можно заменить одним поступательным движением:

 $\overline{v}_j = \overline{m}(\overline{\omega}_j, -\overline{\omega}_j'')$

Получаем в общем случае одно вращение с угловой скоростью $\boldsymbol{\omega}^*$ вокруг оси, проходящей через полюс A, и поступательное движение со скоростью \boldsymbol{v}_A (A – точка приведения), что приводит к кинематическому винту, рассмотренному выше.

ростью $\boldsymbol{\omega}^*$ $\overline{v}_A = \sum_1^n \overline{v}_i + \sum_1^m \overline{v}_j = \sum_1^n \overline{v}_i + \sum_1^m \overline{m}(\overline{\omega}_j, -\overline{\omega}_j^").$

Всю совокупность поступательных движений можно

заменить сложением одним поступательным движением:

 $\overline{\omega}^* = \sum_{1}^{n} \overline{\omega}_i = \overline{J}_1.$

Угловая скорость $\boldsymbol{\omega}^*$ не зависит от выбора полюса и это есть **первый (векторный) инвариант**:

Итак, **угловые скорости** в кинематике складываются так же, как силы в статике (эти векторы являются **скользящими** векторами). **Поступательные скорости** в кинематике складываются так же, как моменты пар в статике (эти векторы являются **свободными** векторами).

Все способы преобразования сил и пар сил в статике подобны преобразованиям скоростей твердого тела в кинематике. И в статике, и в кинематике при приведении системы в общем случае получается статический винт (динама), и соответственно кинематический винт. Как в статике, так и в кинематике существуют соответствующие инвариантные величины (помечены звездочками) и их производные (главный минимальный момент и минимальная поступательная скорость).

точек приведения, и вектора угловой скорости равны:

$$\overline{\overline{v}_M\cdot\overline{\omega}}=\overline{v}_A\cdot\overline{\omega}={J}_2$$
 - второй (скалярный) инвариант.

Раскрывая скалярные произведения получаем: $v_M \cdot \omega \cdot \cos(\overline{v}_M, \overline{\omega}) = v_A \cdot \omega \cdot \cos(\overline{v}_A, \overline{\omega}),$ откуда:

$$\left|v_{M}\cos(\overline{v}_{M},\overline{\omega})=v_{A}\cos(\overline{v}_{A},\overline{\omega})=v^{*}\right|$$
 - минимальная поступательная скорость.