

Кинематика наука о движении

Повторительно-обобщающий урок по теме «Кинематика» в 8 классе

Кинематика - раздел механики, где дается описание того, как движутся тела без выяснения причин.

Механическое движение - это изменение положения тела относительно других тел с течением времени.

Чтобы судить о том, движется данное тело или нет, надо сначала выбрать тело отсчета, а затем посмотреть, меняется ли положение рассматриваемого тела относительно выбранного тела отсчета

Система отсчета:

• Тело отсчета;

• Система координат;

• Прибор для измерения времени.

Относительность механического движения

Это означает, что...

- Бессмысленно говорить о движении тела, не указав тело отсчета, относительно которого рассматривается это движение.
- Относительно разных тел отсчета одно и то же движение может выглядеть поразному: разными могут быть траектории движения, пройденные пути, скорости и

Материальная точка -

это тело, размерами которого можно пренебречь в данных условиях движения.

Например,

- 1. Машина заезжает в гараж здесь машина не является материальной точкой.
- 2. Эта же машина преодолевает расстояние в 60 км здесь машина в в точкой точ

Характеристики механического движения:

- Траектория.
- Пройденный путь.
- Скорость.
- Время.
- Ускорение.

Виды механического движения

Виды механического движения:

Равномерное движение

- это движение, при котором тело за равные промежутки времени проходит одинаковые пути
- Основные характеристики:
- 1. Скорость постоянная v = s/t (m/c)
- 2. Пройденный путь s = vt (м)
- 3. Bpems t = s/v (c)
- 4 График движения

Неравномерное движение

это движение, при котором тело за равные промежутки времени проходит не одинаковые пути.

Особенность - изменение скорости.

Чтобы найти среднюю скорость движения, надо весь пройденный путь разделить на все затраченное время

$$V cp = (s,+s,+s,+...) : (t,+t,+t,+...)$$

Равноускоренное движение

это вид неравномерного движения, когда скорость тела за любые равные промежутки времени изменяется одинаково.

Характеристики:

- Ускорение $a = v/t (m/c^2)$
- Скорость v = at (м/с)
- Π yть $s = at^2 / 2$ (м)
 - Графики равноускоренного движения

Равноускоренное движение

Характеристика движения	v, = 0 v ≠ 0	$\mathbf{v}, \neq 0 \mathbf{v} = 0$
Ускорение	$\mathbf{a} = \mathbf{v} / \mathbf{t}$	a = v, /t
Время	Время разгона t = v/a	Время торможения t = v,/a
Скорость	Конечная скорость v = at	Начальная скорость v, = at
Пройденный путь	$S = at^2/2$	$S = at^2/2$

Равномерное движение по окружности

• Особенности:

скорость в каждой точке траектории по модулю постоянная;

направление скорости в каждой точке траектории изменяется (по касательной).

Характеристики:

- Ускорение центростремительное $a = v^2/r$
- Период обращения T = t/n (c) это время одного полного оборота
- · Частота обращения у =n/t -это число оборотов, совершаемых за 1 с

Проверочный тест

- 1.Поезд прошел первые 40 км со скоростью 80 км/ч, а следующие 50 км со скоростью 100 км/ч. Определите среднюю скорость поезда на всем пути.
- A) 95 KM/4;
- Б) 85 км/ч;
- В)90 км/ч.
 - 2.Скорость поезда за 20 с уменьшилась с 72 км/ч до 54 км/ч. Чему равно ускорение поезда при торможении?
- A) $1,5 \text{ m/c}^2$;
- Б) 0,5 м/c²;
- B) $0,25 \text{ m/c}^2$;
- Γ) 1 M/C².

Проверочный тест (продолжение)

- 3.После старта гоночный автомобиль достиг скорости 360 км/ч за 25 с. Какое расстояние он прошел за это время?
- A) 1500 m;
- Б) 500 м;
- B) 1250 m;
- Γ) 1000 m.
- 4. Автомобиль движется на повороте по круговой траектории радиусом 40 м с постоянной по модулю скоростью 10 м/с. Чему равно центростремительное ускорение автомобиля?
- A) 2.5 m/c^2 ;
- Б) 5 м/c²;
- B) 10 m/c²;
- Γ) 7,5 M/C².

Контрольная работа

- 1. Каково ускорение автомобиля, движущегося со скоростью 72 км/ч, если через 20 с он остановился?
- 2. Лыжник начинает спускаться с горы и за 20 с проходит путь 50 м. Определите ускорение лыжника и его скорость в конце спуска.
- 3. Лифт в течение первых 3 с поднимается равноускоренно и достигает скорости 3 м/с. Затем он продолжает равномерный подъем в течение 6 с. Последние 3 с он движется замедленно с тем же ускорением, с которым поднимался вначале. Определите высоту подъема лифта.

