ДИНАМИКА ТВЕРДОГО ТЕЛА

ЛЕКЦИИ 1,2: ГЕОМЕТРИЯ МАСС

pptcloud.r

1. Определение момента инерции

Рассмотрим прямую l (ось) и систему материальных точек с массами $m_1, \dots m_n$, так, что расстояние от i-ой точки до оси равно r_i . Величина

 $I_l = \sum_{i=1}^n m_i r_i^2$

называется моментом инерции системы относительно оси $\it l$

Для непрерывно распределенных масс

$$I_l = \int_V r^2 dm = \int_V r^2 \rho dv$$

Для однородного (
$$ho = {
m Const}$$
) тела
$$ho = M \, / V$$

$$I_l = \frac{M}{V} \int_V r^2 dv$$

Задача:

научиться считать момент инерции любого тела относительно любой оси

2. Физический смысл момента инерции

Произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил, приложенных к телу

вращательное движение

$$I_{l} \frac{d\omega}{dt} = M_{l}$$

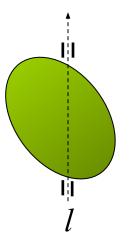
$$K = \frac{1}{2} I_l \omega^2$$

поступательное движение

$$m\frac{d\mathbf{v}}{dt} = \mathbf{F}$$

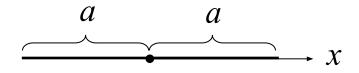
$$K = \frac{1}{2}mv^2$$

Момент инерции представляет собой меру инерции тела во вращательном движении



3а. Моменты инерции простейших **1-D** и **2-D** тел

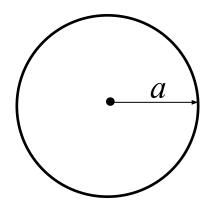
Стержень. Ось проходит через середину стержня, перпендикулярно ему



$$I = \frac{M}{2a} \int_{-a}^{a} x^{2} dx = \frac{M}{2a} \cdot \frac{2a^{3}}{3} = \frac{1}{3} Ma^{2}$$

3b. Моменты инерции простейших 1-D и 2-D тел

Диск. Ось проходит через середину диска, перпендикулярно ему



$$I = \frac{M}{\pi a^2} \int_{0}^{2\pi} \int_{0}^{a} r^2 \cdot r dr d\varphi = \frac{2\pi M}{\pi a^2} \int_{0}^{a} r^2 \cdot r dr = \frac{M}{a^2} \cdot \frac{2a^4}{4} = \frac{1}{2} Ma^2$$

3с. Моменты инерции простейших **1-D** и **2-D** тел

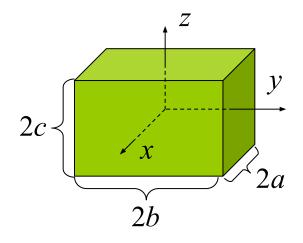
Прямоугольный треугольник. Ось проходит через катет

$$I = \frac{2M}{ab} \int_{0}^{a} \int_{0}^{b-(b/a)x} x^{2} dy dx = \frac{2M}{ab} \int_{0}^{a} x^{2} \cdot (b - (b/a)x) dx =$$

$$= \frac{2M}{ab} \cdot \left(\frac{ba^{3}}{3} - \frac{ba^{3}}{4}\right) = \frac{1}{6}Ma^{2}$$

4а. Моменты инерции простейших **3-D** тел

Прямоугольный параллелепипед.



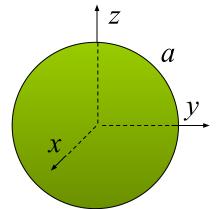
$$I_{x} = \frac{M}{8abc} \int_{-a-b-c}^{a} \int_{-c}^{b} \int_{-c}^{c} (y^{2} + z^{2}) dx dy dz =$$

$$= \frac{M}{8abc} 2a \left(2b \frac{2c^3}{3} + 2c \frac{2b^3}{3} \right) = \frac{M}{3} \left(b^2 + c^2 \right)$$

4b. Моменты инерции простейших **3-D** тел

Шар. Ось проходит через центр

Из соображений симметрии $I_x = I_v = I_z = I$



$$3I = \frac{M}{(4/3)\pi a^3} \int_{V} \left[\left(x^2 + y^2 \right) + \left(z^2 + y^2 \right) + \left(x^2 + z^2 \right) \right] dv = 0$$

$$= \frac{2M}{(4/3)\pi a^3} \int_{V} r^2 dv = \frac{2M}{(4/3)\pi a^3} \int_{0}^{a} r^2 \cdot 4\pi r^2 dr = \frac{3}{5} Ma^2$$

$$I = \frac{1}{5}Ma^2$$

5. Радиус инерции

Момент инерции относительно оси можно выразить в виде

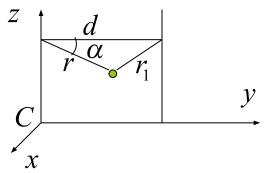
$$I=Mr_0^2$$
 Стержень $r_0=rac{a}{\sqrt{3}}$ Диск $r_0=rac{a}{\sqrt{2}}$ Треугольник $r_0=rac{a}{\sqrt{6}}$ Параллелепипед $r_0=rac{\sqrt{b^2+c^2}}{\sqrt{3}}$ Шар $r_0=\sqrt{rac{3}{5}}\,a$

Величина r_0 называется радиусом инерции тела относительно данной оси

По определению радиус инерции есть длина, равная расстоянию от данной оси той точки, в которой нужно сосредоточить массу всей системы, чтобы получить тот же момент инерции.

6. Теорема (Гюйгенса-Штейнера) о параллельных осях

Момент инерции I относительно оси равен сумме момента инерции $I_{\rm C}$ тела относительно параллельной оси, проходящей через масс и произведения массы тела на квадрат расстояния между осями



$$I_{C} = \int r^{2}dm \qquad I = \int r_{1}^{2}dm \qquad r_{1}^{2} = r^{2} + d^{2} - 2rd\cos\alpha = r^{2} + d^{2} - 2dy$$

$$I = \underbrace{\int r^{2}dm + d^{2}\int dm - 2d\int ydm}_{I_{C}} \qquad I = I_{C} + d^{2}M$$

$$I = \underbrace{\int r^{2}dm + d^{2}\int dm - 2d\int ydm}_{Md^{2}} \qquad I = I_{C} + d^{2}M$$

Очевидное обобщение

$$I_{1} = I_{C} + d_{1}^{2}M$$

$$I_{2} = I_{C} + d_{2}^{2}M$$

$$I_{1} = I_{2} + (d_{1}^{2} - d_{2}^{2})M$$

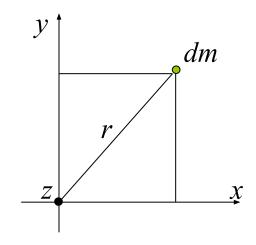
7. Теорема о перпендикулярных осях

Момент инерции **плоской фигуры** относительно оси z, перпендикулярной плоскости фигуры, равен сумме моментов инерции фигуры относительно двух других осей, лежащих в ее плоскости

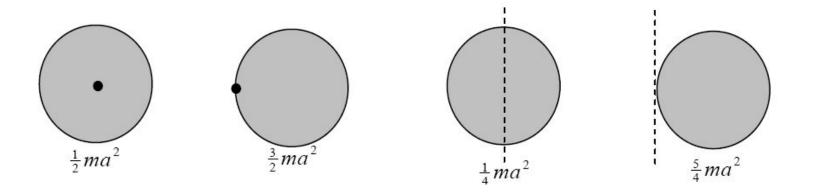
$$I_z = \int r^2 dm$$
 $I_x = \int y^2 dm$ $I_y = \int x^2 dm$

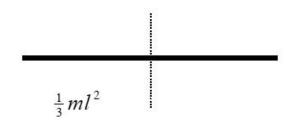
$$r^2 = x^2 + y^2$$

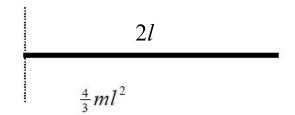
$$I_z = I_x + I_y$$



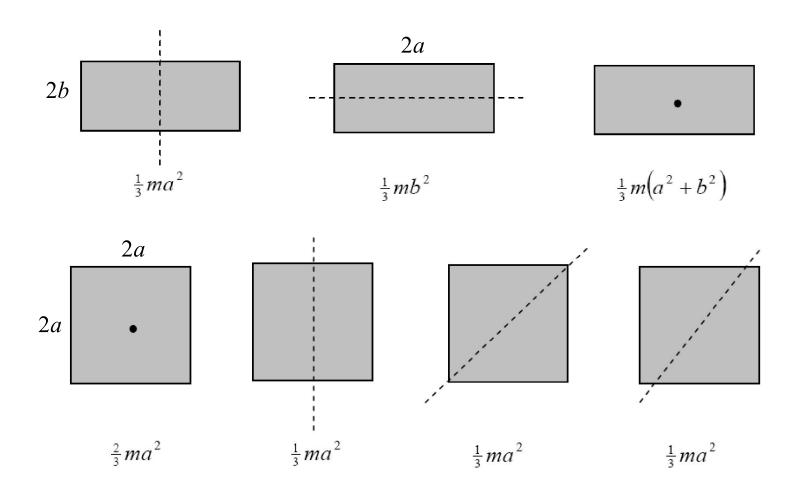
8. Примеры использования теорем



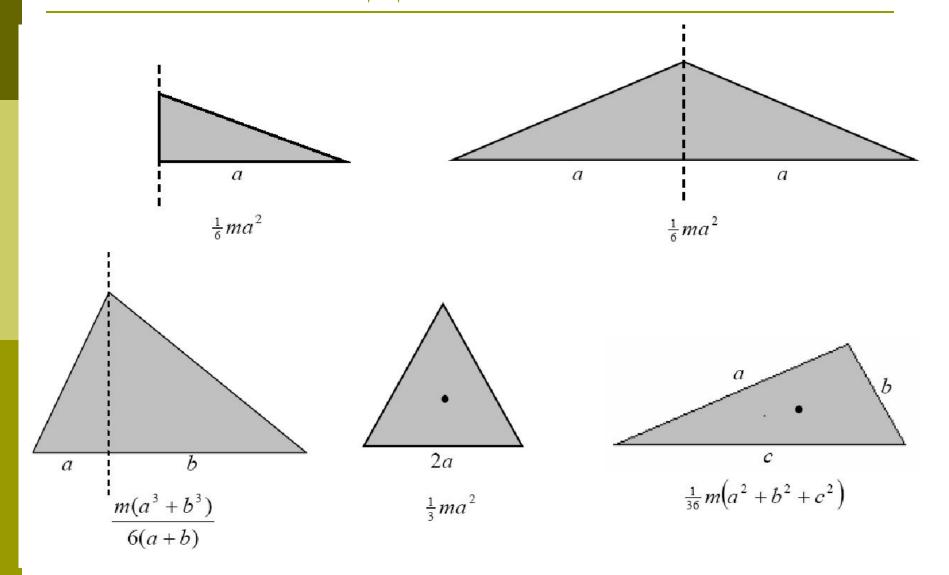




9. Примеры использования теорем

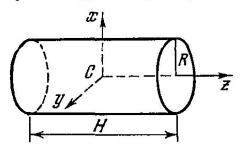


10. Докажите сами



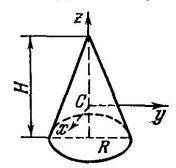
11. 3-D тела.

Прямой круглый цилиндр



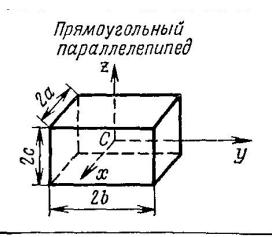
$$I_x = I_y = \frac{1}{4} M \left(\frac{1}{3} H^2 + R^2 \right), \quad I_z = \frac{1}{2} MR^2$$

Прямой круглый конус



$$I_x = I_y = \frac{3}{20} M \left(\frac{1}{4} H^2 + R^2 \right), \quad I_z = \frac{3}{10} MR^2$$

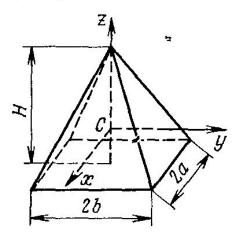
11. 3-D тела.



$$I_x = \frac{1}{3} M (b^2 + c^2), \quad I_y = \frac{1}{3} M (a^2 + c^2),$$

$$I_z = \frac{1}{3} M (a^2 + b^2)$$

Прямоугольная пирамида

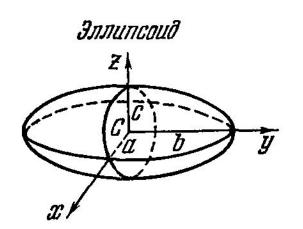


$$I_{x} = \frac{M}{20} \left(\frac{3}{4} H^{2} + 4b^{2} \right),$$

$$I_{y} = \frac{M}{20} \left(\frac{3}{4} H^{2} + 4a^{2} \right),$$

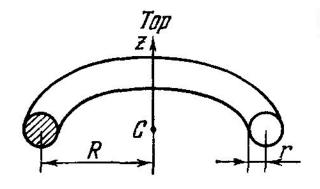
$$I_{z} = \frac{M}{5} (a^{2} + b^{2})$$

12. 3-D тела.



$$I_x = \frac{M}{5} (b^2 + c^2), \quad I_y = \frac{M}{5} (a^2 + c^2),$$

$$I_z = \frac{M}{5} (a^2 + b^2)$$



$$I_z = M\left(R^2 + \frac{3}{4}r^2\right)$$

13. Моменты инерции относительно осей, выходящих из данной точки

$$|PN| = |\mathbf{l}_{0} \times \mathbf{ON}| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \alpha & \cos \beta & \cos \gamma \\ x & y & z \end{vmatrix} = |(z\cos \beta - y\cos \gamma)\mathbf{i} + (x\cos \gamma - z\cos \alpha)\mathbf{j} + (y\cos \alpha - x\cos \beta)\mathbf{k}| \times x$$

$$|PN|^{2} = (y^{2} + z^{2})\cos^{2}\alpha + (z^{2} + x^{2})\cos^{2}\beta + (x^{2} + y^{2})\cos^{2}\gamma - 2xy\cos\alpha\cos\beta - 2yz\cos\beta\cos\gamma - 2zx\cos\gamma\cos\alpha$$

$$I_{l} = \cos^{2} \alpha \int_{V} (y^{2} + z^{2}) dm + \cos^{2} \beta \int_{V} (z^{2} + x^{2}) dm + \cos^{2} \gamma \int_{V} (x^{2} + y^{2}) dm - 2\cos \alpha \cos \beta \int_{V} xy dm - 2\cos \beta \cos \gamma \int_{V} yz dm - 2\cos \gamma \cos \alpha \int_{V} zx dm$$

$$I_{l} = I_{x} \cos^{2} \alpha + I_{y} \cos^{2} \beta + I_{z} \cos^{2} \gamma - 2I_{xy} \cos \alpha \cos \beta - 2I_{yz} \cos \beta \cos \gamma - 2I_{zx} \cos \gamma \cos \alpha$$

 I_{x}, I_{y}, I_{z} моменты инерции относительно осей

$$I_{xy}, I_{yz}, I_{zx}$$

центробежные моменты инерции

14. Тензор инерции

Тензор инерции
$$\mathbf{I} = \begin{pmatrix} I_x & -I_{xy} & -I_{xz} \\ -I_{yx} & I_y & -I_{yz} \\ -I_{zx} & -I_{zy} & I_z \end{pmatrix}$$

$$I_l = \mathbf{l}_0^T \cdot \mathbf{I} \cdot \mathbf{l}_0 = \sum_{i,j=1}^3 I_{ij} l_{0,i} l_{0,j}$$

Некоторые свойства тензора инерции

- 1) Симметричность $I_{ij} = I_{ji}$
- 2) Положительная определенность $\forall \mathbf{x}, |\mathbf{x}| = 1$: $\mathbf{x}^T \cdot \mathbf{I} \cdot \mathbf{x} > 0$

3) Неравенства для
$$I_x, I_y, I_z$$
 $I_z < I_x + I_y, I_z > I_x - I_y$
$$x^2 + y^2 < \left(y^2 + z^2\right) + \left(x^2 + z^2\right) \qquad \left(x^2 + y^2\right) > \left(y^2 + z^2\right) - \left(x^2 + z^2\right)$$

Геометрическое толкование: из трех отрезков, длины которых пропорциональны моментам инерции относительно трех перпендикулярных осей, всегда можно построить треугольник

4) Неравенства для
$$I_{xy}, I_{yz}, I_{zx}$$
 $I_{xy} \le I_z/2, I_{yz} \le I_x/2, I_{zx} \le I_y/2$ $2xy \le x^2 + y^2$

15. Эллипсоид инерции

Тензору I соответствует квадратичная форма

$$F(x, y, z) = I_x x^2 + I_y y^2 + I_z z^2 - 2I_{xy} xy - 2I_{yz} yz - 2I_{zx} zx$$

и поверхность уровня F(x, y, z) = 1

В силу положительной определенности І поверхностью уровня является эллипсоид Его называют эллипсоидом инерции.

Физический смысл эллипсоида инерции

Проведем через начало координат в направлении оси l прямую до пересечения с эллипсоидом инерции. Обозначим через R длину соответствующего отрезка, а через (x_*, y_*, z_*) координаты точки пересечения.

$$x_* = R\cos\alpha, y_* = R\cos\beta, z_* = R\cos\gamma \longrightarrow 1 = F(x_*, y_*, z_*) = R^2I_l \longrightarrow R = \frac{1}{\sqrt{I_l}}$$

Длина радиуса-вектора эллипсоида инерции обратно пропорциональна корню квадратному из момента инерции относительно оси, направленной по этому радиусу

16. Главные оси тензора инерции

Уравнение эллипсоида можно упростить, если перейти к новым координатным осям (x', y', z'), направив их по главным диаметрам поверхности.

Уравнение эллипсоида Тензор инерции в инерции в новых осях

$$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} + \frac{{z'}^2}{c^2} = 1$$

Как найти главные оси?

новых осях

$$\mathbf{I} = \begin{pmatrix} I_x' & 0 & 0 \\ 0 & I_y' & 0 \\ 0 & 0 & I_z' \end{pmatrix}$$

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} + \frac{z'^2}{c^2} = 1$$

$$\mathbf{I} = \begin{pmatrix} I_x' & 0 & 0 \\ 0 & I_y' & 0 \\ 0 & 0 & I_z' \end{pmatrix}$$

$$a = \frac{1}{\sqrt{I_x'}}$$

$$c = \frac{1}{\sqrt{I_z'}}$$

$$c = \frac{1}{\sqrt{I_z'}}$$

$$c = \frac{1}{\sqrt{I_z'}}$$

- 1) Найти решения $\left(\lambda^{(1)},\lambda^{(2)},\lambda^{(3)}\right)$ характеристического уравнения $\det\left(\mathbf{I}-\lambda\mathbf{E}\right)=0$ **Е** единичная матрица
- 2) Найти собственные вектора $(\xi^{(1)}, \xi^{(2)}, \xi^{(3)})$ как нетривиальное решение уравнения

$$\xi^{(i)} = \lambda^{(i)}, \quad i = 1, 2, 3$$

При этом собственные числа $(\lambda^{(1)},\lambda^{(2)},\lambda^{(3)})$ совпадают с (I_x',I_x',I_x') , а собственные вектора $(\xi^{(1)},\xi^{(2)},\xi^{(3)})$ определят направление главных осей (x',y',z')

$$\lambda^{(1)} \neq \lambda^{(2)} \neq \lambda^{(3)}$$
 $\lambda^{(1)} = \lambda^{(2)} \neq \lambda^{(3)}$ трехосный эллипсоид эллипсоид вращения

$$\lambda^{(1)} \neq \lambda^{(2)} \neq \lambda^{(3)}$$
 $\lambda^{(1)} = \lambda^{(2)} \neq \lambda^{(3)}$ эллипсоид вращения

$$\lambda^{(1)} = \lambda^{(2)} = \lambda^{(3)}$$
 шаровой эллипсоид

17. Главные оси инерции

В более широком смысле для данной точки главной осью инерции тела называется ось, для которой оба центробежных момента инерции, содержащие индекс этой оси, равны нулю.

Определение предполагает, что

- Выбрана декартова система координат Oxyz с началом в данной точке O
- Одна из осей (скажем z) совпадает с данной осью
- Вычисленные для этой системы координат центробежные моменты $I_{xz}, I_{yz} = 0$

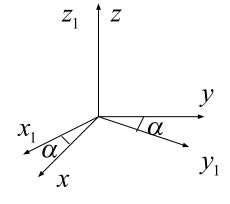
$$\mathbf{I} = egin{pmatrix} I_x & -I_{xy} & 0 \\ -I_{yx} & I_y & 0 \\ 0 & 0 & I_z \end{pmatrix}$$
 Возможный вид тензора инерции Z_1

Свойство быть главной осью не зависит от выбора направлений двух других координатных осей.

$$I_{xz} = \int xzdm = 0 \qquad I_{yz} = \int yzdm = 0$$

$$x_1 = x\cos\alpha + y\sin\alpha \qquad y_1 = -x\sin\alpha + y\cos\alpha$$

$$I_{x_1 z_1} = \int (x \cos \alpha + y \sin \alpha) z dm = I_{xz} \cos \alpha + I_{yz} \sin \alpha = 0$$



$$I_{v_1 z_1} = \dots = 0$$

18. Главные оси инерции и главные оси тензора инерции

Ось является главной осью инерции тогда и только тогда когда она совпадает с одной из главных осей тензора инерции.

 \Rightarrow Пусть ось z совпадает с одной из главных осей тензора инерции. Выберем две другие оси x, y совпадающими с двумя другими главными осями тензора инерции. В этих осях

главными осями тензора инерции. В этих осях
$$\mathbf{I} = \begin{pmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{pmatrix} \Rightarrow I_{xz} = I_{yz} = 0 \Rightarrow \forall x_1, y_1 \quad I_{x_1z} = I_{y_1z} = 0$$

$$\Leftarrow \quad \text{Пусть ось } z \quad \text{является главной осью инерции} \Rightarrow \quad \mathbf{I} = \begin{pmatrix} I_x & -I_{xy} & 0 \\ -I_{yx} & I_y & 0 \\ 0 & 0 & I_z \end{pmatrix}$$

$$\det(\mathbf{I} - \lambda \mathbf{E}) = 0 \quad \begin{vmatrix} I_x - \lambda & -I_{xy} & 0 \\ -I_{yx} & I_y - \lambda & 0 \\ 0 & 0 & I_z \end{pmatrix} = 0 \Rightarrow \lambda^{(3)} = I_z$$

$$\begin{pmatrix} I_x - I_z & -I_{xy} & 0 \\ 0 & 0 & I_z \end{pmatrix} \begin{pmatrix} \xi_x \\ \xi_x \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} I_x - I_z & -I_{xy} & 0 \\ -I_{yx} & I_y - I_z & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \xi_x \\ \xi_y \\ \xi_z \end{pmatrix} = 0 \implies \begin{pmatrix} \xi_x \\ \xi_y \\ \xi_z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

19. Главные центральные оси инерции

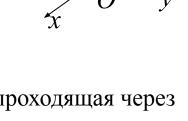
Свойство быть главной осью зависит не только от самой оси, но и от выбранной точки на ней (начала координат).

Вопрос: Когда ось является главной осью для любой лежащей на ней точки?

Пусть ось
$$z$$
 главная для точки O $I_{xz} = I_{yz} = 0$
$$I_{x_1z_1} = \int x_1z_1dm = \int x\left(z-h\right)dm = \int xzdm - h\int xdm = I_{xz} - hMx_C$$

$$I_{x_1z_1} = -hMx_C \qquad I_{y_1z_1} = -hMy_C$$
 Лия того, чтобы ось z была главной для точки. O

Для того, чтобы ось z была главной для точки O_1 необходимо и достаточно, чтобы центр масс тела находился на этой оси



Главной центральной осью инерции называется главная ось, проходящая через центр масс тела

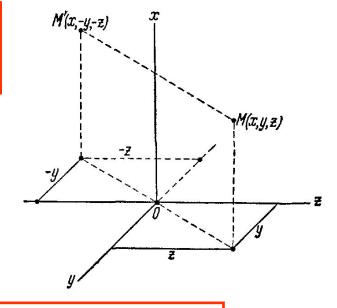
Главная центральная ось инерции является главной осью для всех своих точек, а нецентральная главная ось инерции является главной осью инерции лишь для одной своей точки

20. Свойства симметрии

Если однородное абсолютно твердое тело имеет ось симметрии, то эта ось будет главной осью инерции для всех точек данной оси

Пусть ось x есть ось симметрии Тогда каждой частице M(x,y,z) будет соответствовать такая же частица M'(x,-y,-z)

$$I_{xy} = \sum m_i x_i y_i = 0$$
 $I_{xz} = \sum m_i x_i z_i = 0$



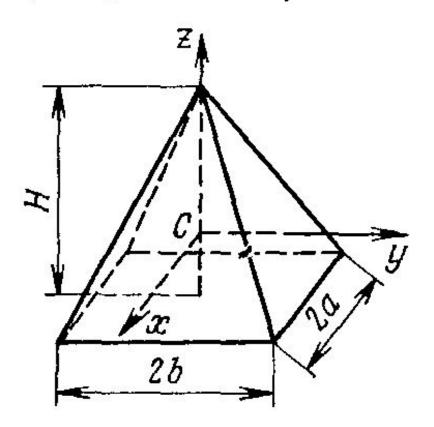
Если однородное абсолютно твердое тело имеет плоскость симметрии, то для всех точек этой плоскости одна из главных осей инерции будет к ней перпендикулярна

Примем плоскость симметрии за плоскость ху. Всякой частице M(x,y,z) будет соответствовать такая же частица M(x,y,-z)

$$I_{xz} = \sum m_i x_i z_i = 0$$
 $I_{yz} = \sum m_i y_i z_i = 0$

21. Пример использования симметрии тела

Прямоугольная пирамида



x, y, z главные оси инерции

$$I_x = \frac{M}{20} \left(\frac{3}{4} H^2 + 4b^2 \right),$$

$$I_y = \frac{M}{20} \left(\frac{3}{4} H^2 + 4a^2 \right),$$

$$I_z = \frac{M}{5} (a^2 + b^2)$$

22. Вычисление моментов инерции относительно произвольных осей

Пусть для тела известны главные центральные моменты инерции I_x, I_y, I_z Дана прямая L . Как вычислить для нее момент инерции?

- 1) Проводим прямую $l \parallel L$ через центр масс C
- 2) Находим углы α, β, γ между l и главными осями инерции
- 3) Вычисляем момент инерции относительно оси l

$$= I_x \cos^2 \alpha + I_y \cos^2 \beta + I_z \cos^2 \gamma$$

4) По теореме Гюйгенса-Штейнера вычисляем момент инерции относительно оси $\ L$

$$I_L = I_l + Md^2$$

23. Пример

Требуется определить момент инерции прямого кругового конуса относительно образующей SB; радиус основания конуса равен R, высота равна H.

x, y, z главные центральные оси инерции OC = H/4

$$\alpha = \pi/2$$
 $\beta = \pi/2 + \varphi$ $\gamma =$

$$I_l = I_y \sin^2 \varphi + I_z \cos^2 \varphi$$

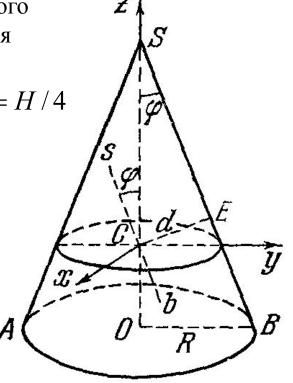
по таблицам
$$I_y = \frac{3}{20}M\left(\frac{H^2}{4} + R^2\right), \quad I_z = \frac{3}{10}MR^2$$
 $\sin \varphi = \frac{R}{\sqrt{H^2 + R^2}}$ $\cos \varphi = \frac{H}{\sqrt{H^2 + R^2}}$

$$\sin \varphi = \frac{R}{\sqrt{H^2 + R^2}} \quad \cos \varphi = \frac{H}{\sqrt{H^2 + R^2}}$$

$$I_{l} = \frac{3}{20}M \frac{R^{2}}{H^{2} + R^{2}} \left(\frac{9}{4}H^{2} + R^{2} \right)$$

$$d = CS\sin\varphi = \frac{3}{4}\frac{HR}{\sqrt{H^2 + R^2}}$$

$$I_L = \frac{3}{20}M \frac{R^2}{H^2 + R^2} (6H^2 + R^2)$$



24. Еще пример

Вращающаяся часть подъемного крана состоит из стрелы КF длиной L и весом G, противовеса D весом Q и груза E весом P. Стрела составляет с вертикальной осью вращения угол α .Определить момент инерции крана относительно оси вращения, считая противовес D и груз E точечными массами, а стрелу — однородной тонкой балкой. Оси х и х'д перпендикулярны к плоскости рисунка.

$$I_{z} = I_{z}^{KF} + I_{z}^{D} + I_{z}^{E} \qquad I_{z}^{D} = \frac{Q}{g}d^{2}, \quad I_{z}^{E} = \frac{P}{g}L^{2}\sin^{2}\alpha$$

$$I_{z}^{KF} = I_{x'}^{KF}\cos^{2}\left(\cancel{x},z\right) + \underbrace{I_{y'}^{KF}\cos^{2}\left(\cancel{y},z\right) + \underbrace{I_{z'}^{KF}\cos^{2}\left(\cancel{z},z\right)}_{0} \quad \cancel{x}$$

$$\frac{\pi/2}{0} \qquad 0 \qquad \frac{G}{3g}L^{2} \qquad \frac{\pi}{2} - \alpha$$

$$\frac{G}{3g}L^2\sin^2\alpha$$

$$I_z = \frac{Q}{g}d^2 + \frac{L^2\sin^2\alpha}{g}\left(\frac{G}{3} + P\right)$$