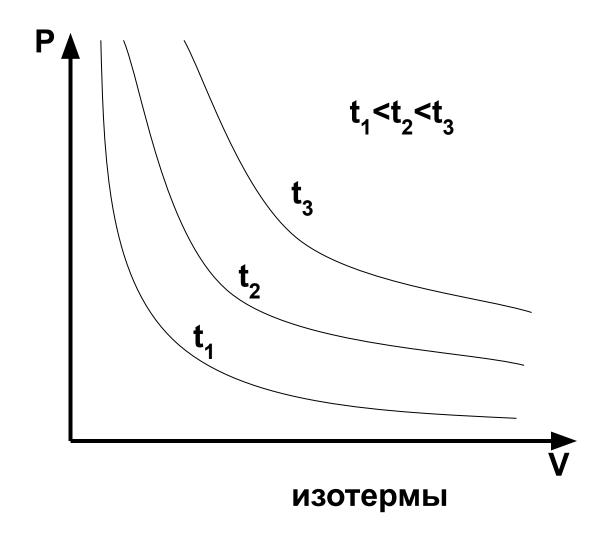
Лекции по физике. Молекулярная физика и

основы термодинамики

Основные газовые законы. Идеальный газ. Кинетическая теория газов

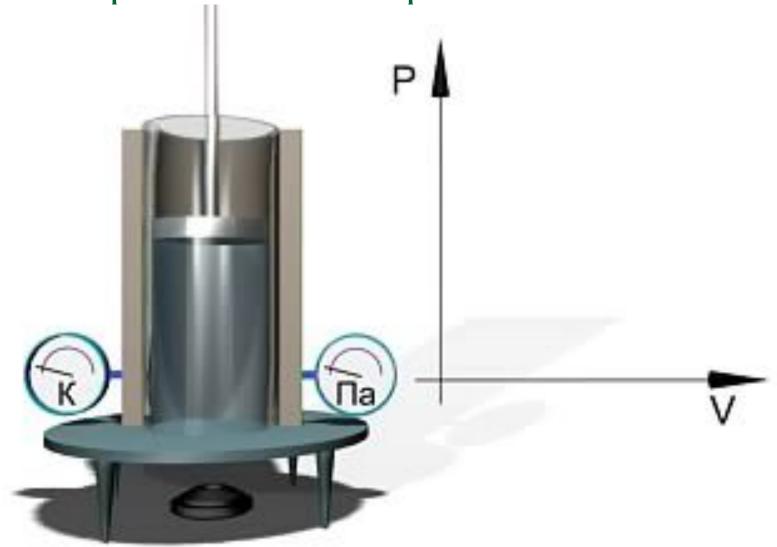
900igr.net

- 1. Закон Дальтона: $P = \sum_i P_i$
- 2. Закон Бойля-Мариотта: P·V=const при t⁰=const
- 3. Закон Шарля: P/T=const при V=const
- 4. Закон Гей-Люссака: V/T=const при P=const
- 5. Закон Авогадро: одинаковые количества газов при одинаковых температуре и давлении занимают одинаковый объём

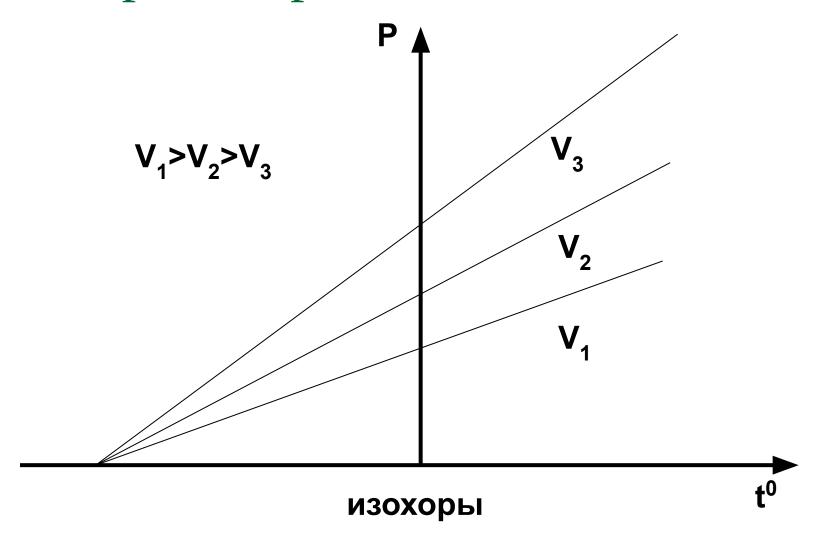

- Законы Шарля и Гей-Люссака имеют такой простой вид если температура измеряется по абсолютной шкале
- Первоначально эти законы были сформулированы для температуры, измеренной в некоторой практической шкале. В этом случае они имеют более сложный вид:

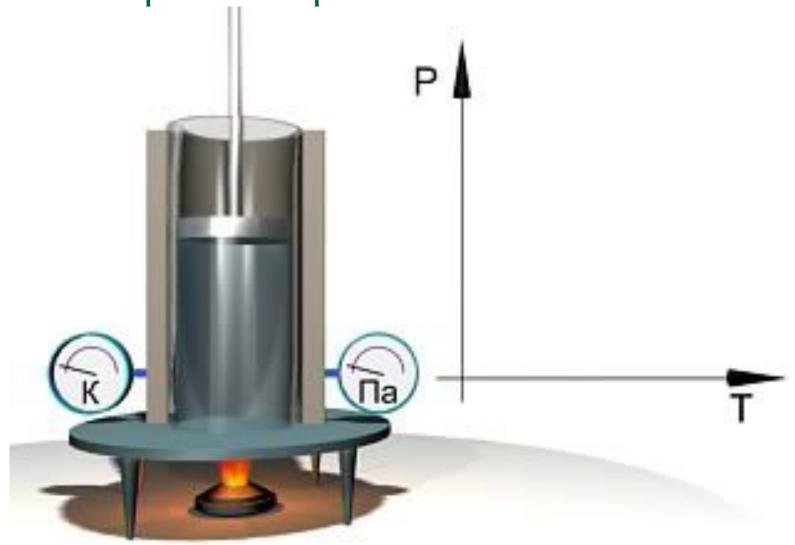
$$P=P_0[1+\alpha \cdot (t-t_0)]$$

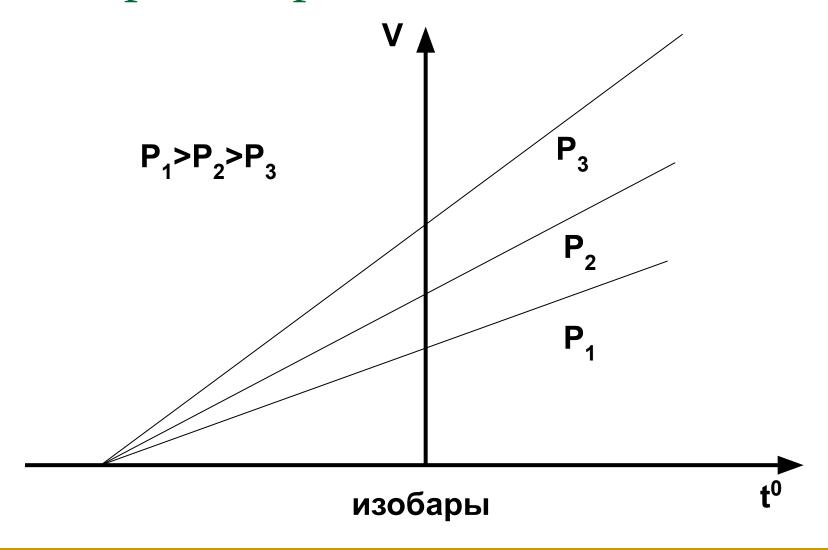
 $V=V_0[1+\beta \cdot (t-t_0)]$

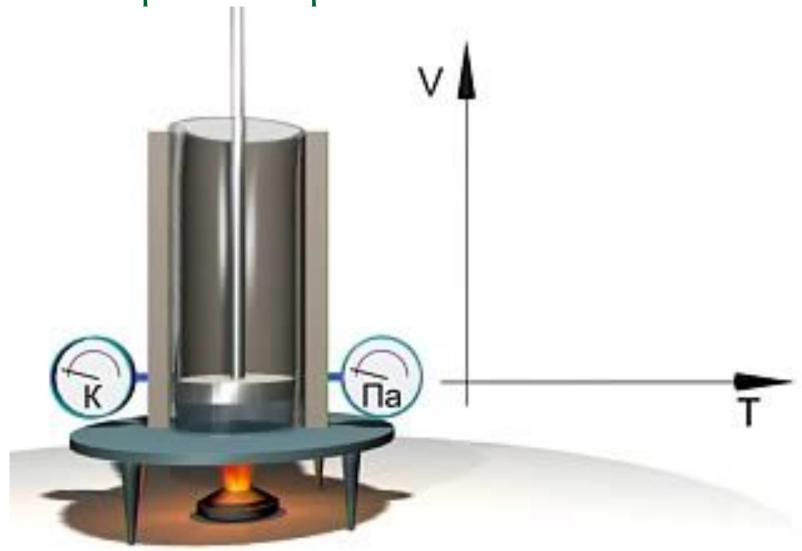

при чём коэффициенты α и β оказались равными и не зависящими от рода газа

- Процессы, описываемые уравнениями
 2-4 называются изопроцессами:
 - 2. Изотермическим
 - з. Изохорным
 - 4. Изобарным


Изотермический процесс

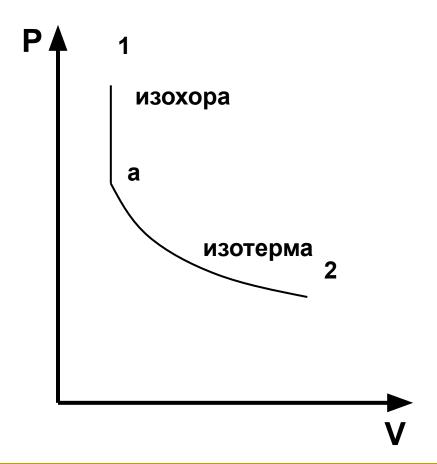

Изотермический процесс


Изохорный процесс


Изохорный процесс

Изобарный процесс

Изобарный процесс



 Если измерять температуру по шкале Цельсия, то оказывается, что точка пересечения изохорного и изобарного процессов с осью температур имеет координату t=-373,15 °C. Это значит, что α=β=1/273,15 1/°C

- Если ввести новую шкалу температур, такую, что T=t+273,15, то уравнения примут более простой вид:
 - 3. P/T=const
 - 4. V/T=const
- Определённая таким образом температура называется абсолютной температурой

- Рассмотрим переход из состояния 1 в 2 через а на графике P-V:
 - □ Для 1 \rightarrow a: P_1/T_1 =const= P_a/T_a = P_a/T_2 (*)
 - □ Для $a \rightarrow 2$: $P \cdot V = P \cdot V_1 = P_2 \cdot V_2 \rightarrow P_a^2 = P_2^2 \cdot V_2^4 / V_1$
 - □ Исключив Р_а из (*), получим:
 Р₁/Т₁=(Р₂ · V₂)/(Т₂ · V₁) или:
 P · V/T=const

т.о. мы пришли к уравнению состояния идеального газа

- Из закона Авогадро следует, что величина соотношения (P·V)/Т не зависит от вида газа, значит мы можем записать, что для одного моля любого газа (P·V)/T=R, где R универсальная газовая постоянная, называемая постоянной Авогадро
- **R**=8,31 Дж/(град моль)
- Из закона Дальтона следует, что при постоянных V и T, P является линейной функцией количества вещества v

 Т.о., мы пришли к уравнению Клапейрона-Менделеева:

$$P \cdot V = v \cdot R \cdot T$$

ИЛИ

$$P \cdot V = (m/\mu) \cdot R \cdot T$$

Идеальный газ

- Идеальным называется такой газ, который подчиняется закону Клапейрона-Менделеева
- Поведение реальных газов приближается к поведению идеального газа в пределе низких давлений и высоких температур
- Размеры молекул идеального газа малы по сравнению с межмолекулярным расстоянием, а энергией взаимодействия молекул можно пренебречь

Оценка размеров молекул

Средний размер молекул <d><d><e(V/N) $^{1/3}$, где V - объём, а N - количество молекул Для воды: $\rho=1$ г/см 3 , $\mu=18$ г/моль \rightarrow V $_{\mu}=18$ см 3 . <d><e(V $_{\mu}$ /N $_{A}$) $^{1/3}=(18/6\cdot10^{23})^{1/3}\approx3\cdot10^{-8}$ см $^2=3\cdot10^{-10}$ м

- Оценка расстояния между молекулами в газе
- <□>=(V/N_A)^{1/3}, при комнатной температуре и атмосферном давлении 1 моль газа занимает объём 22 400 см³ →
- $< = (22400/6 \cdot 10^{23})^{1/3} \approx 3,3 \cdot 10^{-7} \text{ cm}$
- Т.о. <□> на порядок больше, чем <d>, соответственно, объём на три порядка больше

 Оценка средней длины свободного пробега молекул в газах

$$\lambda \sim < \square > (< \square > / < d >)^2$$

При нормальном давлении **λ~10**-5 **см**, то есть на два порядка больше <□>

 Задача МКТ заключается в установлении взаимосвязи между макроскопическими параметрами ТД системы (Р, Т и др.) и её микроскопическими характеристиками (λ, μ, <v>, <d>, <□>)

Вывод основного уравнения МКТ

- Рассмотрим цилиндр с площадью основания
 S=1, опирающийся на стенку сосуда
- Примем следующую модель
 - Частицы разделены на три равные группы, каждая из которых движется вдоль одной из координатных осей
 - Частицы не взаимодействуют между собой
 - □ При ударе частицы о стенку, на неё действует сила <f>; такая, что:

$$< f>_i \cdot T = \Delta p_{ix} \approx 2 \cdot p_{ix}$$
 (*)

Вывод основного уравнения МКТ

Число ударов о стенку:

$$z_i = S \cdot n_i \cdot v_{ix} \cdot \Delta t$$

- Заменим в (*) <f>, на <<f>> так, что
 <f>, т=<<f>> ∆t
- Тогда, полная сила, действующая на стенку со стороны молекул, имеющих скорость v_{ix}:

$$F_{ix}=z_i \cdot 2 \cdot p_{ix}/\Delta t = S \cdot n_i \cdot v_{ix} \cdot p_{ix}$$

Вывод основного уравнения МКТ

- P=ΣF_i/S=Σn_i·v_{ix}· p_{ix}=n·<v_x· p_x>=1/3·n· ·<**v**·**p**>=(2/3)·n·<E_k>
- Таким образом мы получили основное уравнение молекулярно-кинетической теории газов:

$$P=(2/3) \cdot n \cdot \langle E_k \rangle$$

Оценка скорости молекул

$$<\mathbf{v}> = \sqrt{\frac{3 \cdot \mathbf{P}}{\rho}} = \sqrt{\frac{3 \cdot \mathbf{R} \cdot \mathbf{T}}{\mu}}$$

Оценка скорости молекул

Для молекул водорода Н₂ µ=2 · 10⁻³ кг/моль,
 при комнатной температуре:

<v>≈1800 м/с

для молекул $O_2 \mu = 2 \cdot 10^{-3} \text{ кг/моль, при комнатной температуре:}$

<v>≈500 м/с

 Сравнивая уравнение Клапейрона-Менделеева:

$$P=(2/3) \cdot n \cdot < E_k >$$

мы можем заключить что:

$$R \cdot T/N_A = (2/3) \cdot$$

• Окончательно получаем:

 Т.о. мы выяснили молекулярнокинетический смысл температуры – она пропорциональна средней кинетической энергии молекулы

Из P=(2/3)·n·<E_k>
 и <E_k>=(3/2)·k·T
 следует что:
 P=n·k·T

KOHOLJOKUM