

Рис. 26. Условные обозначения: 1 - сланцы; 2 - известняки, 3 - покровные отложения.

Рис. 27. Карта графиков р_к над выходами кварцевых жил.

Профилирование симметричной установкой АА'МNB'В

Профилирование установкой с фиксированными питающими электродами (метод срединных градиентов - СГ).

В

-двухсторонняя дипольно-осевая установка

Μ

Рис. 34

ABMN и

Δ'Β'ΜΝ

 ρ_{κ}

- дипольно-осевая остановка

- дипольная параллельная установка

- -дипольно-осевая установка с двумя
- - разносами

Круговое профилирование

Круговое профилирование симметричной установкой AMNB

Интерпретация результатов профилирования

- графики р_к

полевых работ

- карты изоом
- карты графиков р
- данные об электрических свойствах

- геологические сведения по участку

горных пород и руд

Плоский вертикальный контакт

1- установка АМNC_∞
2 – установка ВМNC_∞
3 – симметричная установка АМNB
4 – двухсторонняя дипольно-осевая

Рис. 39

Вертикальный пласт малой мощности

Вертикальный пласт большой мощности

Изометричные тела

Методы заряда, электрической корреляции и погруженных электродов

Рудный вариант метода заряда

Съемка эквипотенциальных линий над заряженным телом

Съемка кривых градиента потенциала вдоль профиля

Метод электрической корреляции (МЭК)

Метод вертикального градиента

Гидрогеологический вариант метода заряда

Метод погруженных питающих электродов

Интерпретация материалов в методе заряженного тела

1. Установление связи рудных тел между собой

 $\frac{\Delta U}{J \cdot MN}$

2. Поиски новых рудных тел 3. Определение концов проводника $\Delta U/J$ $\Delta \approx (0.3 - 0.5)h$ d≈L Рис. 9.

Влияние на результаты интерпретации данных метода заряда рельефа

Метод естественного электрического поля (МЕП)

Электрохимические поля

$$CuFeS_2 + HO_2 = CuSO_4 + FeSO_4$$
 (1)

Рис. 1.

Фильтрационное электрическое поле

 $\Delta U = \xi \epsilon \rho p / 4 \pi \eta$ (2)

Диффузионно–адсорбционные электрические поля

$$\Delta U_{d} = 11.6 \, \lg C_{1} / C_{2} = 11.6 \, \lg \rho_{2} / \rho_{1} \qquad (3)$$

Решение прямых задач метода ЕП

1. Поле поляризованной сферы.

$$\rho_{e} = a \qquad \rho_{i}$$

$$E = E_{0} \cos \theta \qquad (4)$$

$$U_{e} = E_{0} a^{2} \frac{\rho_{e}}{\rho_{e} + 2\rho_{i}} \frac{\cos \theta}{r^{2}} \qquad (5)$$

$$M = \frac{E_0 a^2}{\rho_e + 2\rho_i} \qquad (6)$$

$$U_e = M \cdot \cos \theta / r^2 \qquad (7)$$

$$r = \sqrt{x^2 + h^2}, \quad \cos \theta = h/r$$

$$U_M = M \cdot \frac{\cos \theta}{r^2} = M \cdot \frac{h}{\sqrt{x^2 + h^2}} \cdot \frac{1}{x^2 + h^2} = M \cdot \frac{h}{\sqrt{x^2 + h^2}} (8)$$

-

$$U_{_{\rm ЭКСТ}} = M/h^2 \qquad (9)$$

2. Поле поляризованного кругового цилиндра.

$$M = 2 \frac{\rho_e}{\rho_e + \rho_i} E_0 a \tag{11}$$

$$U_e = M \frac{\cos\theta}{r} \qquad (12)$$

$$U = M \frac{\cos\theta}{h^2 + x^2}$$
(13)

Методика и техника работ методом ЕП ±(1 – 2) мВ

Способ потенциала

$$U_{i} = \Delta U_{i} - U_{3 cp} + \Delta U_{1}^{\prime} \cdot i/n \qquad (14)$$

Съемка способом градиента потенциала

Обработка и интерпретация результатов ЕП

- Способ потенциала
- Способ градиентов

$$m = \sum (+\Delta U) + \sum (-\Delta U) \qquad (15)$$
$$p = \frac{|m|}{\sum |\Delta U|} 100\% \qquad (16) \qquad m < 5\%$$

Интерпретация результатов ЕП Оценка глубины залегания поляризованных тел По параметру т m a \bigcap

Рис. 3.

h $\approx 0.86m - cфера,$ h $\approx (0.46 - 0.58)m - вертикальный цилиндр,$ h $\approx 0.6m - горизонтальный цилиндр,$ h $\approx 0.55m - вертикальный пласт.$

Глубина залегания определяется по хорде q на высоте 0.65 U_{min} – для сферы, 0.5 U_{min} – для цилиндра, 0.4 U_{min} – для вертикального пласта

Область применения метода ЕП

Зависимость ВП горных пород и руд от физических факторов

1. Зависимость ВП от плотности тока
 2. Зависимость ВП от времени действия поляризующего тока 1 – 1.5 минут

3. Зависимость ВП от сопротивления р

- ρ от 10 до 10000 Омм
- $\eta_{_{\rm K}}$ от десятых долей до 4 5%

4. Зависимость ВП от времени разрядки

Основные положения теории метода ВП

$$E_{BII} = \eta E = \eta (E_0 + E_{BII}) \qquad (2)$$

$$\eta_{\kappa} = \frac{E_{en}}{E} = \frac{E_{en}}{E_0 + E_{en}} = \frac{\Delta U_{en}}{\Delta U_0 + \Delta U_{en}} = \frac{\Delta U_{en}}{\Delta U_{np}} \qquad (3)$$

$$\Delta U_{BR} = 0 \quad (4) \qquad 1 - 3 \text{ мин}$$
$$U_{e} - U_{i} = -\lambda \frac{dU_{e}}{dn} \quad (5)$$
$$\frac{1}{\rho_{e}} \frac{dU_{e}}{dn} = \frac{1}{\rho_{i}} \frac{dU_{i}}{dn} \quad (6)$$
$$U_{e} - U_{i} = 0 \quad (7)$$
$$\frac{1 - \eta_{e}}{\rho_{e}} \frac{dU_{e}}{dn} = \frac{1 - \eta_{i}}{\rho_{i}} \frac{dU_{i}}{dn} \quad (8)$$

Поле ВП в однородных и неоднородных средах $J = E_0 / \rho$ (9) $E_{BII} = \eta E$ и $E_0 = E - E_{BII}$ (10) $J = E_0 / \rho = (1 - \eta) E / \rho = E / \rho^*$ (11) $\frac{\rho}{1-\eta} = \rho^* \qquad (12)$ $U_0 = \frac{J\rho}{2\pi r}, \qquad E_0 = -\frac{dU_0}{dr} = \frac{J\rho}{2\pi r^2}$ (13) $U_0 = \frac{J\rho}{2\pi(1-\eta)r}, \quad E_0 = -\frac{dU_0}{dr} = \frac{J\rho}{2\pi(1-\eta)r^2} \quad (14)$

-режим одиночных импульсов; -периодический импульсный режим; -режим разнополярных импульсов

ΔU_{вп} от единиц до 100 мВ ΔU_{пр} – от десятков мВ до десятков вольт Основные способы измерений ВП

время измерения ΔU_{вп} через 0.5 сек

0.1 – 0.2 сек

Г, СГ, КЭП и ВЭЗ η_кир_к АМNB

Обработка и интерпретация результатов наблюдений

 $\rho_{\kappa} = K \cdot \Delta U_{np} / I, \qquad \eta_{\kappa} = \Delta U_{Bn} / \Delta U_{np} \cdot 100\%.$

Выделение аномалий ВП

η_к < 2% η_к, достигают 4% и более

Определение горизонтальных размеров поляризуемых тел.

Определение глубины залегания тел $< 15^{\circ}$ Установки ВЭЗ AO Определение направления падения тел и их протяженность на глубину градиентная установка Ŋк Рис. 6

Рис. 7