Динамическая теория дифракции рентгеновских лучей в кристаллах (лекция)

Московский государственный университет имени М.В. Ломоносова, Москва, Россия e-mail: vabushuev@yandex.ru

Вторая Балтийская школа "Методы и инструменты рентгеновских исследований" Калининград, 3-7 октября 2013 года

Дорогие коллеги !!!

Это не научный доклад в бешенном ритме.

Это ЛЕКЦИЯ !!!

Поэтому прошу задавать ЛЮБЫЕ вопросы

прямо во время чтения лекции !!!!

Краткий план:

- 1. Общие сведения о рентгеновском излучении
- 2. Уравнения Максвелла
- 3. Кинематическое приближение
- 4. <u>А так ли нам она нужна</u>, эта самая динамическая теория ??
- 5. Основные положения и уравнения динамической теории дифракции. Два подхода к этой теории.
- 6. Граничные условия. Геометрии Брэгга и Лауэ. Коэффициенты отражения и прохождения.
- 7. Некоторые примеры

...осмелюсь напомнить, что...

Рентгеновские лучи (X-rays) – электромагнитное излучение с длиной волны $\lambda \sim r_{ar} \sim d \sim 1$ Ангстрема = 10⁻⁸ см = 0.1 нм. Именно поэтому они применяются для

Энергия рентгеновских фотонов $\hbar \omega \sim 10$ кэВ >> энергии связи не слишком глубоких электронов

Открытие X-rays – Вильгельм Конрад <u>Рентген</u> (1895 г.) Нобелевская премия (первая в мире) – 1901 г.

... и это всегда приятно напомнить другому физическому, но не рентгеновскому люду, а именно: оптикам, акустикам, магнетологам, радиофизикам, астрономам, гонцами за новыми элементарными частицами, искателями кварков и других темных и скрытых материй, энергий и действенных идей....)

...всегда надо "танцевать" от эксперимента...

Схема эксперимента по регистрации кривой дифракционного отражения (КДО). 1 - рентгеновская трубка, СИ, РЛСЭ; 2 - кристалл-монохроматор, 3 - гониометр, 4 – исследуемый образец, 5 - детектор, S₁₋₃ - щели.

Микроскопические уравнения Максвелла

(поле + заряды в вакууме)

rot
$$\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}$$
, rot $\mathbf{H} = \frac{1}{c} \left(\frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{j} \right)$
div $\mathbf{E} = 4\pi\rho$, div $\mathbf{H} = 0$.

E = E(r, t), H = H(r, t) – вещественные не усредненные функции координаты r и времени t (никакой мистики).

 $\rho(\mathbf{r}, t) = e\psi\psi^*$ – плотность заряда, **j**(**r**, *t*) – ток зарядов, возмущенный эл.-магн. полем. Макроскопическое уравнение Максвелла

Введем поляризацию **Р** и индукцию **D**:

$$\mathbf{j} = \frac{\partial \mathbf{P}}{\partial t}, \qquad \mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}$$

rotrot
$$\mathbf{E}(\mathbf{r},t) + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathbf{D}(\mathbf{r},t) = 0.$$

Уравнение одно, а неизвестных – два (E, D) ??

<u>Материальное уравнение (линейный случай)</u>

$$4\pi P^{i}(\mathbf{r},t) = \int_{-\infty}^{t} dt' \int_{-\infty}^{\infty} d^{3}\mathbf{r}' \chi^{ij}(\mathbf{r},\mathbf{r}';t,t') E^{j}(\mathbf{r}',t'),$$

χ^{*ij*} – поляризуемость среды (в общем случае тензор

второго ранга).

Для стационарных сред: **т = t - t'.** Для кристаллов (*трансляционная симметрия*)

$$\hat{\chi}(\mathbf{r},\mathbf{r}';\tau) = \hat{\chi}(\mathbf{r}+\mathbf{a},\mathbf{r}'+\mathbf{a};\tau) =$$

= $\sum_{\mathbf{g}} \hat{\chi}_{\mathbf{g}}(\mathbf{r}-\mathbf{r}',\tau) e^{i\mathbf{g}\mathbf{r}'}$ - теорема Блоха

<u>Метод преобразований (интегралов) Фурье</u>

$$\mathbf{E}(\mathbf{r},t) = \int_{-\infty}^{\infty} \mathbf{E}(\mathbf{k},\omega) \exp(i\mathbf{k}\mathbf{r} - i\omega t) d^{3}\mathbf{k}d\omega,$$

где фурье-амплитуды (частотно-угловой спектр)

$$\mathbf{E}(\mathbf{k},\omega) = \frac{1}{(2\pi)^4} \int_{-\infty}^{\infty} \mathbf{E}(\mathbf{r},t) \exp(-i\mathbf{k}\mathbf{r} + i\omega t) d^3\mathbf{r} dt.$$

Вопрос: что такое k и ω ??

.....волновой вектор и частота – <u>не правильно</u> *Немые переменные интегр:* **k** = щ, ы; 1,2,3; синий, красный, серо-буро-малиновый и т.п. **Простейший случай**. Излучение в вакууме (**P** = 0, **D** = **E**)

Из уравнения Максвелла следует, что $k^2 = (\omega/c)^2$

Обычно отвечают, что $k = \omega/c = 2\pi/\lambda$.

Правильно, но не совсем...

Еще говорят, что $\mathbf{k} = \pm (\omega/c)\mathbf{n}$

Уже лучше, учтена возможность наличия встречных (обратных) волн, но все равно ответ не полный ... кое-что мы потеряли ... Мы чуть не упустили такое решение:

$$\mathbf{k} = \mathbf{k'} + i\mathbf{k''}$$

(комплексный вектор, в вакууме, как это не звучит пародоксально !!!!)

Условие прежнее:

$$k^2 = k'^2 - k''^2 + 2i\mathbf{k}'\mathbf{k}'' = \omega^2/c^2$$

Отсюда:

$$k'^2 - k''^2 = k^2;$$

 $\mathbf{k}'\mathbf{k}'' = 0.$

Это плоская неоднородная (эванесцентная) волна. Поверхности равных фаз и амплитуд взаимно ортогональны.

где

$$\hat{\chi}_{\mathbf{g}}(\mathbf{k},\omega) = \int_{-\infty}^{\infty} d^{3} \boldsymbol{\rho} \int_{0}^{\infty} d\tau \hat{\chi}_{\mathbf{g}}(\boldsymbol{\rho},\tau) \exp(-i\mathbf{k}\boldsymbol{\rho} + i\omega t).$$

В рентгеновском диапазоне вдали от краев поглощения связь между Р и Е локальная и изотропная (!!):

$$4\pi \mathbf{P}(\mathbf{r},\,\omega) = \chi(\mathbf{r},\,\omega)\mathbf{E}(\mathbf{r},\,\omega),$$

Индукция $\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} = \varepsilon \mathbf{E}$, где $\varepsilon = 1 + \chi$, ε - диэлектрическая проницаемость. При больших частотах смещение электрона **x** определяется вторым законом Ньютона $md^2x/dt^2 = e\mathbf{E}$. Отсюда смещение $\mathbf{x} = -(e/m\omega^2)\mathbf{E}$, а поляризация $\mathbf{P} = e\mathbf{x}n(\mathbf{r})$, где $n(\mathbf{r})$ - плотность электронов.

$$\chi(\mathbf{r}) = -\frac{4\pi n(\mathbf{r})e^2}{m\omega^2}$$

Фурье-компоненты поляризуемости χ_h

$$\chi_h = \frac{1}{V_c} \int_{V_c} \chi(\mathbf{r}) \exp(-i\mathbf{h}\mathbf{r}) d\mathbf{r}$$

где V_с – объем элементарной ячейки.

$$\chi_h = -\frac{n_0 r_0 \lambda^2}{\pi} F_h$$

где $n_0 = V_c^{-1} - плотность$ элементарных ячеек, $r_0 = e^2/mc^2$

Оценим χ_0 для кристалла кремния (параметр решетки a = 5.43 A, 8 атомов в ячейке, 14 электронов в атоме). Так как $r_0 = 2.8 \times 10^{-13}$ см, $n_0 = 1/a^3 = 6.25 \times 10^{21}$ см⁻³, $F_0 = 8 \times 14$, то для Си K_{α} -излучения ($\lambda = 1.54$ A) получим, что

$$\chi_0 = -1.5 \times 10^{-5}.$$

Видно, что величина χ_0 крайне мала и отрицательна. Последнее приводит, в частности, к явлению полного внешнего отражения (**ПВО**) РЛ (в отличие от полного внутреннего отражения в оптике видимого диапазона, для которого $\chi_0 > 0$). Есть <u>два понятия</u> (подхода) в физике рассеяния рентгеновских лучей:

- 1. Кинематическая теория (а лучше и правильнее сказать приближение)
- 2. Динамическая теория (как наиболее точная и адекватная)

Аксиомы кинематической теории

- 1. Пренебрегаем поглощением (µ*l* << 1)
- 2. Пренебрегаем преломлением ($\Delta \theta \sim 1-5$ угл. сек)
- 3. Пренебрегаем влиянием рассеянной волны на проходящую волну, т.е. *R* << 1 (однократное рассеяние).

Кинематическое рассеяние

$$E_1(R_0) = -E_0 \int_{-\infty}^{\infty} \chi(\mathbf{r}) \frac{e^{ikR}}{R} \exp(i\mathbf{k}_0 \mathbf{r}) d\mathbf{r} - \mathbf{nepboe Борновское}$$
приближение

В дальней зоне (область Фраунгофера) $R \approx R_0 - (\mathbf{R}_0/R_0)\mathbf{r}$

$$E_1(\mathbf{S}) \propto \int_{-\infty}^{\infty} n(\mathbf{r}) \exp(-i\mathbf{S}\mathbf{r}) d\mathbf{r}$$

Если бы знать фазу, то можно из обратного фурье-преобразования восстановить 3D-строение объекта n(r) !!! (см. ниже)

$$F_h = \sum_a f_h^{(m)} \exp(-W_h^{(m)}) \exp(-i\mathbf{h}\mathbf{r}_m),$$

$$f_h^{(m)} = \int_m n(\mathbf{r}) \exp(-i\mathbf{h}\mathbf{r}) d\mathbf{r}$$

Здесь F_h – структурная амплитуда, $f_h^{(m)}$ – атомный фактор рассеяния *m*-го атома, \mathbf{r}_m – координата *m*-го атома в элементарной ячейке, $\exp(-W_h^{(m)})$ – тепловой фактор Дебая-Валлера.

Более строгая теория приводит к

$$f_h = f_{h0} + \Delta f_h' + i \Delta f_h'',$$

где f_{h0} – его потенциальная часть, $\Delta f_h'$ и $\Delta f_h''$ – дисперсионные поправки (их вклад возрастает с приближением энергии квантов к энергиям электронных переходов.

Динамическая дифракция

- Здесь самосогласованным образом учитывается все:
- 1. Поглощение,
- 2. Преломление, иными словами граничные условия !!
- 3. И самое главное многократность процессов рассеяния

<u>Граничные условия</u>

Две схемы дифракции: геометрия Брэгга ("на

отражение") и геометрия Лауэ ("на прохождение").

Проблемы в динамической теории: (даже в случае идеальных кристаллов)

Y. Feldman, V. Lyahovitskaya, G. Leitus, I. Lyubomirsky,
E. Wachtel, V.A.Bushuev, Yu.Rosenberg & G.Vaughan
Synchrotron radiation–induced crystallization of amorphous Barium
Titanate Oxide membranes //

Appl. Phys. Lett. 95, 051919 (2009).

В итоге мы приходим к таким состояниям:

....а в "кинематике" все просто: (!!!)

$$A(\mathbf{S}) = \sum_{n=1}^{N} f_n(\mathbf{S}) \exp(i\mathbf{SR}_n)$$

$$E_1(\mathbf{S}) \propto \int_{-\infty}^{\infty} n(\mathbf{r}) \exp(-i\mathbf{S}\mathbf{r}) d\mathbf{r}$$

... А так как объекты малы, то и возникает крамольная мысль – а так ли нам она нужна эта самая динамическая теория ??

Когерентная рентгеновская дифракция

(безлинзовая X-гау микроскопия)

Преобразования Фурье

$$I(x) = \int_{-\infty}^{\infty} F(q) \exp(iqx) dq$$

$$F(q) = A(q)e^{i\varphi(q)}$$

Что важнее – амплитуда или фаза поля ??

Есть две фотографии – Исаак Ньютон и Бритни Спирс. ...Оцифровываем изображения и делаем прямые и обратные Фурье-преобразования.....

F=A(Ньютон)exp[iф(Бритни Спирс)]

Что (кто) получится ??!!

Фурьеамплитуды

Прямое Фурье-преобразование

Теперь переходим в прямое пространство

Фурьефазы, а все ______А=1 !!

Исаак Ньютон

Итерационный алгоритм восстановления фазы

Пример реконструкции (I. Vartanyants, A. Efanov, DESY, 2010)

$$\chi(\mathbf{r}) = \sum_{h} \chi_{h} \exp(i\mathbf{h}\mathbf{r}).$$

Поле в кристалле

$$\mathbf{E}(\mathbf{r}) = \sum_{h} \mathbf{E}_{h} \exp(i\mathbf{q}_{h}\mathbf{r}).$$

где $\mathbf{q}_h = \mathbf{q}_0 + \mathbf{h}$

rot rot
$$\mathbf{E} = \operatorname{grad} \operatorname{div} \mathbf{E} - \Delta \mathbf{E}$$

Основное уравнение динамической теории:

$$\Delta \mathbf{E} + k_0^2 \mathbf{E} = -k_0^2 (\chi \mathbf{E}),$$

где $k_0 = \omega/c = 2\pi/\lambda$ – величина волнового вектора волны в вакууме с частотой ω и длиной волны λ (волновое число).

... Все это, конечно, хорошо, однако давно пора вернуться к основной теме лекции – к динамической теории дифракции

Есть два подхода

1. Метод дисперсионного уравнения:

$$\mathbf{E}(\mathbf{r}) = \mathbf{A}\exp(i\mathbf{k}\mathbf{r}),$$

где $\mathbf{A} = const$, $\mathbf{k} - \mathbf{H}$ еизвестный вектор.

2. Метод уравнений Такаги:

$$\mathbf{E}(\mathbf{r}) = \mathbf{A}(\mathbf{r})\exp(i\mathbf{k}_{vac}\mathbf{r}),$$

где $A(\mathbf{r})$ – неизвестная медленно меняющаяся функция, \mathbf{k}_{vac} - известная (как в вакууме).

Основное уравнение динамической теории

<u>Дисперсионное уравнение</u> <u>в двухволновом приближении</u>

$$\mathbf{E}(\mathbf{r}) = \mathbf{e}_0 E_0 \exp(i\mathbf{q}_0 \mathbf{r}) + \mathbf{e}_h E_h \exp(i\mathbf{q}_h \mathbf{r}) ,$$

$$(\delta_0 - \chi_0)E_0 - C\chi_{-h}E_h = 0,$$

$$(\delta_h - \chi_0)E_h - C\chi_hE_0 = 0,$$

C = 1для σ -поляризации и $C = \cos 2 \vartheta_{\rm B}$ для π -поляризации.

$$(\delta_0 - \chi_0)(\delta_h - \chi_0) - C^2 \chi_h \chi_{-h} = 0,$$

$$\mathbf{q}_{0} = \mathbf{k}_{0} + k_{0} \mathbf{\epsilon} \mathbf{n} \qquad (\dots)$$

$$(2\gamma_{0}\varepsilon - \chi_{0})E_{0} - C \chi_{-h}E_{h} = 0,$$

$$(2\gamma_{h0}\varepsilon - \alpha - \chi_{0})E_{h} - C\chi_{h}E_{0} = 0,$$

$$(2\gamma_{0}\varepsilon - \chi_{0})(2\gamma_{h}\varepsilon - \alpha - \chi_{0}) - C\chi_{h}\chi_{-h} = 0,$$

$$\gamma_{0} = k_{0z}/k_{0}, \quad \gamma_{h} = (\mathbf{k}_{0} + \mathbf{h})_{z}/k_{0}.$$

В геометрии дифракции Брэгга $\gamma_h < 0$, в случае Лауэ $\gamma_h > 0$.

$$\alpha = [k_0^2 - (\mathbf{k}_0 + \mathbf{h})^2] / k_0^2$$

Учтем, что $h = 2k_0 \sin \theta_B$, получим $\alpha = 2\Delta \vartheta \sin 2\vartheta_B$, где $\Delta \vartheta = \vartheta - \vartheta_B$

<u>Два корня решения дисперсионного уравнения</u>

$$\varepsilon_{1,2} = (1/4\gamma_0) \{ \chi_0(1+b) + \alpha b \pm [(\chi_0(1-b) - \alpha b)^2 + 4bC^2\chi_h\chi_{-h}]^{1/2} \},\$$

где $b = \gamma_0 / \gamma_h$ - коэффициент асимметрии брэгговского отражения. В геометрии Брэгга b < 0, в случае Лауэ b > 0.

Два корня – автоматически **ДВЕ** проходящих и **ДВЕ** дифрагированных волны !!!!

$$R_{1,2} = E_h^{(1,2)} / E_0^{(1,2)} = (2\gamma_0 \varepsilon_{1,2} - \chi_0) / C \chi_{-h}$$

$$\gamma_0 = \sin(\psi + \theta_B), \gamma_h = \sin(\psi - \theta_B).$$

Геометрия Брэгга

Граничные условия для амплитуд полей:

$$E_0(z=0) = 1, \quad E_h(l) = 0.$$

Поле в любой точке кристалла:

$$E_g(\mathbf{r}) = \exp[i(\mathbf{k}_0 + \mathbf{g})\mathbf{r}][E_{g1}\exp(ik_0\varepsilon_1 z) + E_{g2}\exp(ik_0\varepsilon_2 z)],$$

где g = 0 (проходящая волна), g = h (дифрагированная).

 $\operatorname{Im}(\varepsilon_1)\operatorname{Im}(\varepsilon_2) < 0$!!!!

Коэффициент отражения

$$E_{01} = 1/(1-p), \quad E_{02} = -p/(1-p), \quad E_{g1,2} = R_{1,2}E_{01,2},$$
$$p = (R_1/R_2)\exp[ik_0(\varepsilon_1 - \varepsilon_2)l].$$

$$R \equiv E_h(0)/E_0(0) = (R_1 - pR_2)/(1 - p).$$

$$P_h(\Delta \vartheta) = (\gamma_h / \gamma_0) |R|^2$$
 (КДО)

$$\Delta \vartheta_{\rm B} = C |\chi_h| / b^{1/2} \sin 2 \vartheta_{\rm B} -$$
 ширина КДО.

Типичная ширина КДО $\Delta \theta_{B} \sim 0.1 - 10$ угл. сек

$$\Lambda = \lambda (\gamma_0 \gamma_h)^{1/2} / \pi C |\chi_h|$$
 - глубина экстинкции.

Типичная глубина экстинкции $\Lambda \sim 1 - 10$ мкм

$$\Delta \theta_B = \frac{\lambda}{\Lambda} \frac{\gamma_h}{\pi \sin 2\theta_B}$$

КДО СиК_а-излучения от кристалла кремния с толщиной $l = 1 \ \mu m \ (l), 2 \ \mu m \ (2) \ и \ 10 \ \mu m \ (3);$ симметричное отражение (220).

Кривые дифракционного отражения (220) Си K_{α} -излучения от кристалла кремния (*a*) и угловые зависимости глубины проникновения РЛ в кристалл (*b*). Коэффициент асимметрии отражения *b*: кривые 1 - 0.1, 2 - 1, 3 - 10.

Геометрия дифракции Лауэ

Граничные условия:

$$E_0(0) = 1, \quad E_h(0) = 0.$$

Амплитуды полей в кристалле:

$$E_{01} = -R_2/(R_1 - R_2), \quad E_{02} = R_1/(R_1 - R_2).$$

$$\gamma_0 = \cos(\psi + \theta_B), \gamma_h = \cos(\psi - \theta_B),$$

Кривые дифракционного отражения (1) и прохождения (2) в случае Лауэ для кристаллов с толщиной $l = 23 \,\mu m$ (a, тонкий кристалл) и $l = 300 \,\mu m$ (b, толстый кристалл, эффект Бормана). СиК_a-излучение, Si(220), b = 1.

Интенсивность полного поля в кристалле

Вблизи поверхности ($z \ll \Lambda$)

$$I_{SP}(z, \Delta \vartheta) = |1 + Rexp(ih_z z)|^2.$$

В общем случае

$$I(\Delta \theta) = [1+b|R|^2 + 2C\sqrt{b}|R|F_c \cos(\varphi + \varphi_c)]V_{eff}$$

$$V_{eff} = \frac{\mu / \gamma_0 + \mu' / \gamma'}{\mu_{int} + \mu' / \gamma'}$$

 $\mu_{int}(\Delta \theta) = 2k_0 \text{Im}(\epsilon)$ - интерф. коэффициент поглощения $F_c = \exp[-(1/2)h^2 < (z - z_c)^2 >]$ – когерентная фракция $\phi_c = 2\pi m z_c/d$, z_c – когерентная позиция

a - КДО (1), угловая зависимость интенсивности полного поля в кристалле при z = 0 (2), z = d/4 (3), z = d/2 (4), z = 3d/4 (5); b – пространственное распределение стоячей волны при угловых отстройках $\Delta \theta = -\Delta \theta_{\rm B}$ (1) и $\Delta \theta = \Delta \theta_{\rm B}$ (2). Вертикальные линии показывают положение атомных плоскостей. СиК_{*a*}-излучение, Si(220), b = 1.

$$2(d + \Delta d)\sin(\theta_{\rm B} + \Delta \theta_{\rm 0}) = n\lambda$$
$$\Delta \theta_{\rm 0} = -(\Delta d/d)tg\theta_{\rm B}$$

Рекуррентная формула

Уравнения Такаги

 $\chi_d(\mathbf{r}) = \chi(\mathbf{r} - \mathbf{u}(\mathbf{r}))$

 $\chi(\mathbf{r}) = \sum_{h} \chi_{h} \exp(i\mathbf{h}\mathbf{r})$

 $\chi_d(\mathbf{r}) = \sum_h (\chi_h e^{-i\mathbf{h}\mathbf{u}}) e^{i\mathbf{h}\mathbf{r}}$

$$\chi_h(z) = \chi_h e^{-i\Phi(z) - W(z)}$$

 χ_h – поляризуемость идеального кристалла, $\Phi(z) = hu(z) - фаза, u(z) - смещение$ атомных плоскостей, exp(-W(z)) - статический фактор Дебая-Валлера.

$$E(r) = E_0(z)e^{i\mathbf{k}_0\mathbf{r}} + E_h(z)e^{i\mathbf{k}_h\mathbf{r}}$$

 \mathbf{k}_0 – волновой вектор в вакууме, $\mathbf{k}_h = \mathbf{k}_0 + \mathbf{h}.$

rotrot
$$\mathbf{E} = \text{graddiv } \mathbf{E} - \Delta \mathbf{E}$$

$$\Delta E e^{i\mathbf{k}_0\mathbf{r}} = \left[-k_0^2 E(z) + 2ik_{0z}\frac{\partial E}{\partial z} + \frac{\partial^2 E}{\partial z^2}\right]e^{i\mathbf{k}_0\mathbf{r}}$$

Уравнения Такаги

$$\frac{dE_0}{dz} = \frac{i\pi}{\lambda\gamma_0} \left[\chi_0 E_0 + \chi_{\overline{h}} e^{i\Phi(z) - W(z)} E_h \right],$$

 $\frac{dE_h}{dz} = \frac{i\pi}{\lambda\gamma_h} \Big[(\chi_0 + \alpha) E_h + \gamma_h e^{-i\Phi(z) - W(z)} E_0 \Big],$

$$\alpha = 2(\theta - \theta_B)\sin 2\theta_B$$

Уравнение Такаги-Топена

$$R(z) = \frac{1}{\sqrt{b}} \frac{E_h(z)}{E_0(z)} \sqrt{\frac{\chi_{\bar{h}}}{\chi_h}} e^{i\Phi(z)}$$

 $\frac{dR}{dz} = -\frac{2i}{\Lambda} \Big[y\widetilde{C} + Y(z) \Big] R(z) - \frac{i\widetilde{C}}{\Lambda} (1 + R^2) e^{-W(z)},$

 $y = \frac{\Delta \theta}{\Delta \theta_B}, \quad Y(z) = -\frac{1}{2} \Lambda \frac{d\Phi}{dz} = \frac{1}{2} \Lambda \left| h_z \right| \frac{\Delta d(z)}{d},$ $\widetilde{C} = \frac{\sqrt{\chi_h \chi_{\overline{h}}}}{|\chi_{hr}|}.$

Трехкристальная (высокоразрешающая) рентгеновская дифрактометрия

Структура слоев пористого германия по данным высокоразрешающей рентгеновской дифрактометрии

- Б брэгговское рассеяние,
- А псевдопик кристалла анализатора,
- М отраженное от подложки малоугловое рассеяние рентгеновского пучка на пористой структуре,
- КД частично когерентное диффузное рассеяние,
- Д диффузное рассеяние на нанокристаллитах и нанопорах.

Радиус пор 25-30 нм, нанокристаллиты - 10 нм, степень пористости 56%.

Распределение интенсивности рассеяния CuK_{\Box} -излучения на кристалле Si с **КТ** из Ge в окрестности узла Si(111). (Dd/d = 0.04, $r_0 = 10$ нм, $a_z = 2$ нм, $l_0 = 40$ нм, $s_0 = 0.2d_0$)

"Пыль глотать замучаетесь.." (В.В.Путин)

Спасибо за внимание

... Но это еще не все – будет еще одна лекция....