

КВАНТОВЫЕ ПОСТУЛАТЫ БОРА

- ГОУ СОШ №149
- Учитель физики Т. Л. Касимовская

Нильс Хенрик Давид (7.10.1885—18 .11.1962)

- Датский физик, один из создателей современной физики.
- Основатель (1920) и руководитель Института теоретической физики в Копенгагене (Институт Нильса Бора);
- создатель мировой научной школы; иностранный член АН СССР (1929).
- Создал теорию атома,
- в основу которой легли планетарная модель атома,
- квантовые представления и предложенные им постулаты.
- Важные работы по теории металлов, теории атомного ядра и ядерных реакций.

- 1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома (порядка 10^{-12} 10^{-13} см, что в десятки или даже в сотни тысяч раз меньше размеров самого атома).
- 2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).
- 3. В целом атом нейтрален, из чего следует, что число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической таблице.

Электроны движутся вокруг ядра, подобно тому как планеты движутся вокруг солнца.

Такой характер движения обусловлен действием кулоновских сил

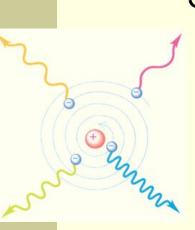
- крупный шаг в развитии знаний о строении атома.
- наглядная и полезная для объяснения многих экспериментальных данных, в частности была совершенно необходимой для объяснения опытов по рассеянию α-частиц

НО <u>обнаружила и свои недостатки:</u>

неспособна объяснить

не смогла объяснить все свойства атомов, факт длительного существования **атома**, т. е. его

устойчивость

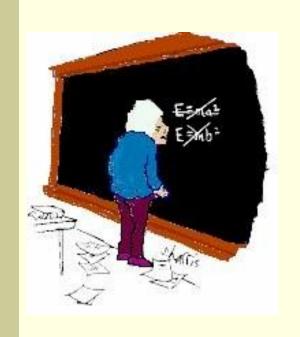


По классическим законам атом должен излучать электромагнитные волны, т.к. электроны движутся с ускорением.

Это должно приводить к уменьшению запаса потенциальной энергии в системе ядро — электрон, а следовательно, и к постепенному уменьшению радиуса орбиты электрона и, наконец, к падению электрона на ядро (за время порядка 10⁻⁸ с атом прекратил бы свое существование).

HO

- **атомы обычно Не излучают** электромагнитные волны, а
- **атомы устойчивы,** т.е. электроны не падают на атомные ядра



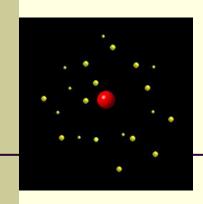
Никаких доказательств того, что атомы непрерывно исчезают, не было,

следовательно,

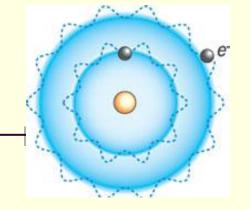
модель Резерфорда в чем-то ошибочна

ПОСТУЛАТЫ БОРА

Бор предположил, что

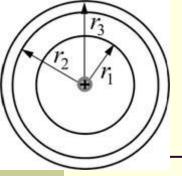

электрон в атоме не подчиняется законам классической физики.

В 1913 году Бор показал, что **поведение микрочастиц Нельзя** описывать теми же законами, **что и макроскопических тела**.

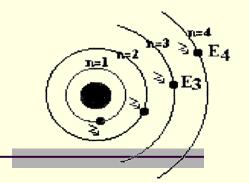

Бор **предположил**, что **величины** характеризующие **микромир**, **должны квантоваться**, т.е. они могут принимать только определенные **дискретные значения**.

Законы микромира - квантовые законы!

Эти законы в начале 20 столетия еще не были установлены наукой. Бор сформулировал их в виде трех постулатов дополняющих (и "спасающих") атом Резерфорда.



ПОСТУЛАТЫ БОРА

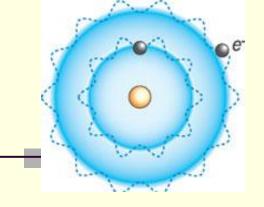


І постулат

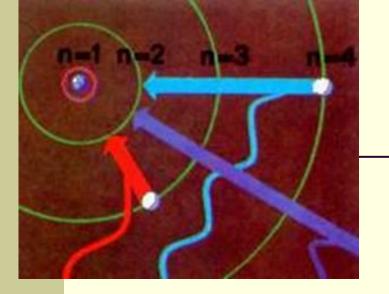
I. Атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определенная энергия.

ПОСТУЛАТЫ БОРА

I постулат


 Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.

Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора: mrv =nħ


где m — масса электрона, n — номер орбиты,

 \hbar — постоянная Планка (\hbar = 1,05·10-34 Дж·с).

ПОСТУЛАТЫ БОРА II постулат

2. При движении по стационарным орбитам электрон <u>не излучает</u> и <u>не поглощает</u> энергии

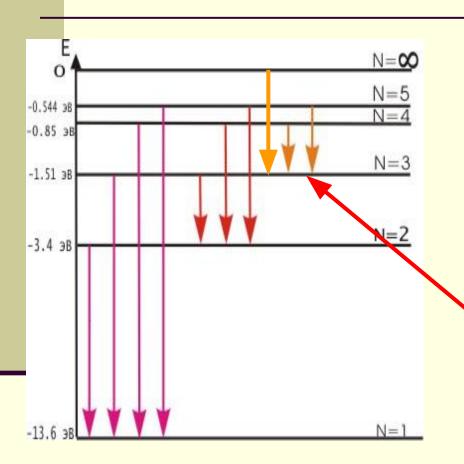
III постулат

2. Излучение света происходит при переходе атома из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией.

III постулат

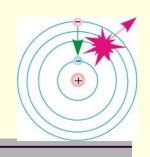
При этом энергия испущенного атомом фотона разности энергий стационарных состояний, а

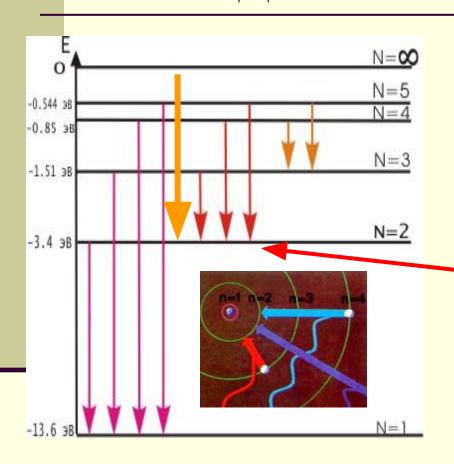

частота излучения определяется по формуле:


$$v = \frac{E_k - E_n}{h}$$

где Ek - энергия атома в более высоком энергетическом состоянии; En - энергия атома в более низком энергетическом состоянии.

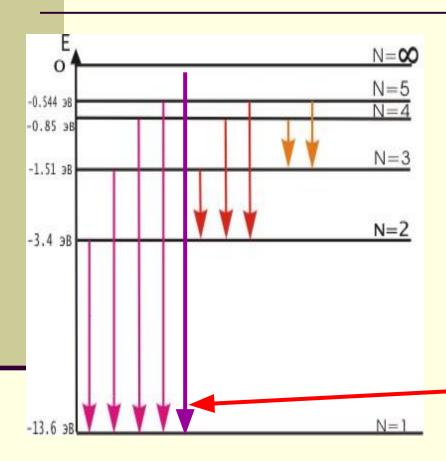
Третий постулат позволяет вычислить по известным экспериментальным значениям энергий стационарных состояний частоты излучения атома водорода.

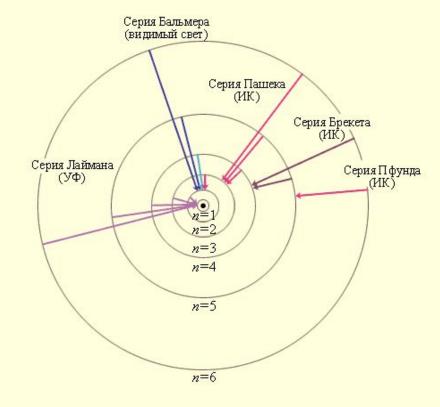

СЕРИЯ ПАШЕНА-ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ

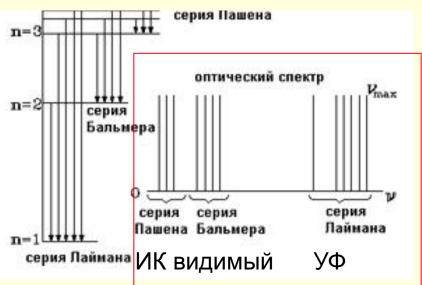


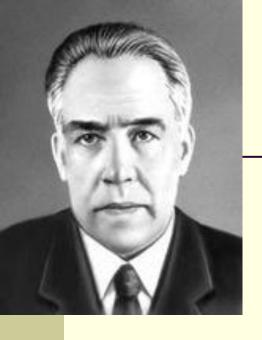
Если атом водорода переходит из более **ВЫСОКИХ** энергетических состояний - в третье: излучение света происходит в инфракрасном диапазоне частот;

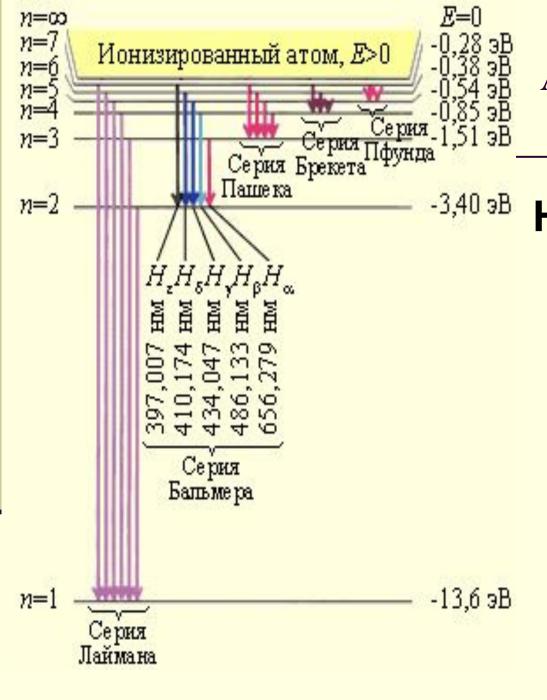
СЕРИЯ БАЛЬМЕРА-ВИДИМЫЙ СВЕТ




Если атом водорода переходит из более **ВЫСОКИХ** энергетических состояний - во второе -излучение света происходит в В ВИДИМОМ диапазоне;

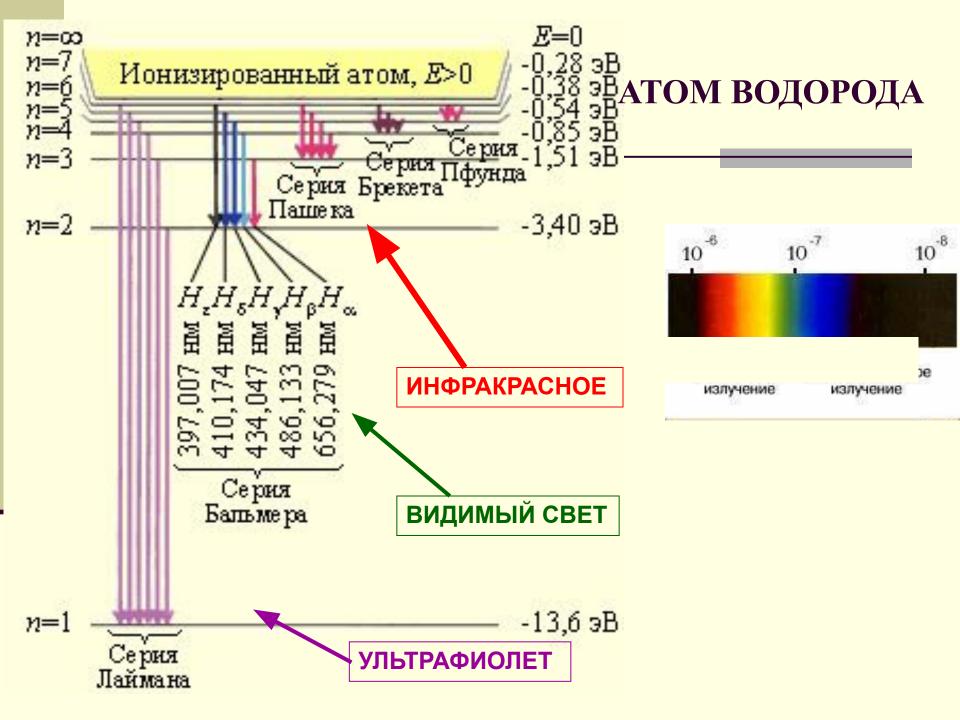

СЕРИЯ ЛАЙМАНА УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ


Если атом водорода переходит из более высоких энергетических состояний - в первое - излучение света происходит в ультрафиолетовом диапазоне.



ПОСТУЛАТЫ БОРА

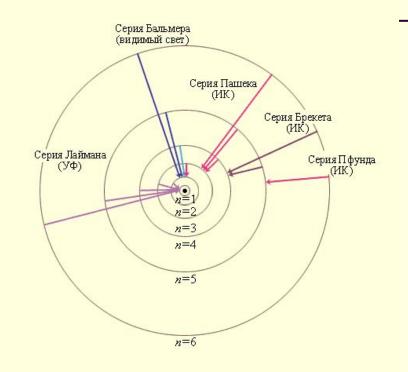
Если атом переходит в одно из возбужденных состояний, долго оставаться там он не может: атом самопроизвольно (спонтанно) переходит в основное состояние.

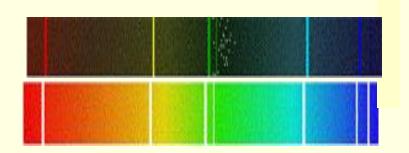


Свои постулаты Бор применил для объяснения излучения и поглощения света *атомом водорода.*

АТОМ ВОДОРОДА

На основании теории Бора оказалось возможным построить количественну ю теорию спектра водорода.

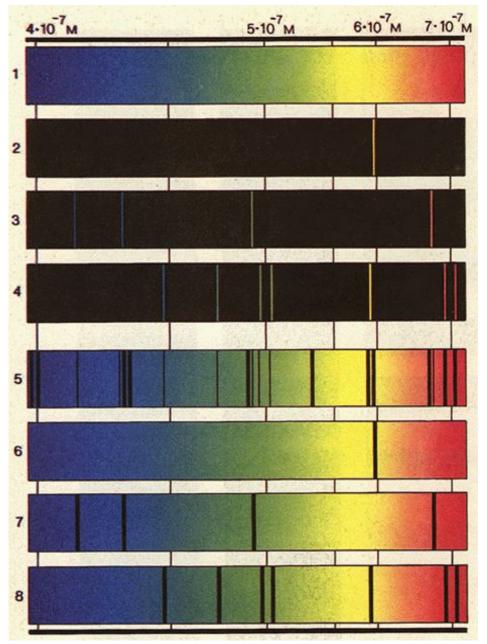

Спектры испускания: 1 - натрия; 2 - водорода; 3 - гелия.


Спектры поглощения: 4 - натрия; 5 - водорода; 6 - гелия.

спектры излучения

Спектр нагретого вещества в газообразном состоянии состоит из узких линий разного цвета. Такой спектр называется линейчатым спектром излучения. Для получения такого спектра используют дуговой или искровой разряд. Линейчатый спектр излучения у каждого химического элемента свой, не совпадающий со спектром другого химического элемента.

СПЕКТРЫ ИСПУСКАНИЯ


Расчеты Бора привели к согласию с экспериментально определенными частотами.

Частоты излучений можно определить по спектрам атомов: на фоне сплошного спектра поглощения (на черном фоне) видны цветные линии излучения, соответствующие определенным длинам волн или частотам

Серия Бальмера (видимый свет) Серия Пашека (MK) Серия Брекета (ИК) Серия Лаймана Серия Пфунда (УФ)

СПЕКТРЫ ПОГЛОЩЕНИЯ

Поглощение светапроцесс, обратный излучению: атом переходит из низших энергетических состояний в высшие. При этом атом поглощает излучение тех же частот, которые излучает при обратных переходах.

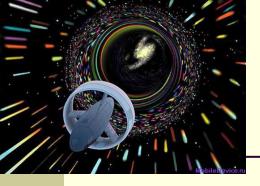
6-10⁻⁷м 7-10⁻⁷м СПЕКТРЫ ИСПУСКАНИЯ

1-сплошной

2-натрия

3-водорода

4-гелия


СПЕКТРЫ ПОГЛОЩЕНИЯ

5-солнечный

6-натрия

7-водорода

8-гелия

ТРУДНОСТИ ТЕОРИИ

Построить количественную теорию уже для атома гелия на основе боровских представлений оказалось затруднительным

В современной физике с помощью квантовой механики построена количественная теория излучения и поглощения света.

В рамках классической физики оказалось невозможным ответить на многие вопросы, связанные с поведением электронов внутри атомов, с излучением и поглощением атомов