Создание проблемной ситуации на уроках физики

Одним из приемов объяснения материала на уроках физики является прием аналогии. При построении умозаключения по аналогии:

- 1. анализируют изучаемый объект;
- 2. обнаруживают его сходство с ранее изученным или хорошо известным объектом;
- 3. переносят известные свойства ранее изученного объекта на изучаемый объект

енты структу ры задачи	е, смысл	ученика	педагога	конструировани я задач
Синтез	создание из различных идей нового или уникальног о продукта или плана	обсуждает обобщает связывает сопоставляет резюмирует суммирует	организует обр. связь(рефле ксию) расширяет оценивает развивает идею дискутирует	создайте, изобретите, предскажите, сконструируйте, оформите, измените, вообразите, улучшите, предложите

денствия

тлаголы для

помнон определени деиствии

В силу такого различия методика изучения всех физических законов не может быть одинаковой. Так, например, ознакомление учащихся с физическими принципами (законами сохранения, принципами суперпозиции, независимости световых пучков и др.) целесообразно проводить на основе информационно-иллюстративного приема, т. е. принципы следует сообщать учащимся без вывода, а их истинность подтверждать достоверным числом экспериментальных фактов.

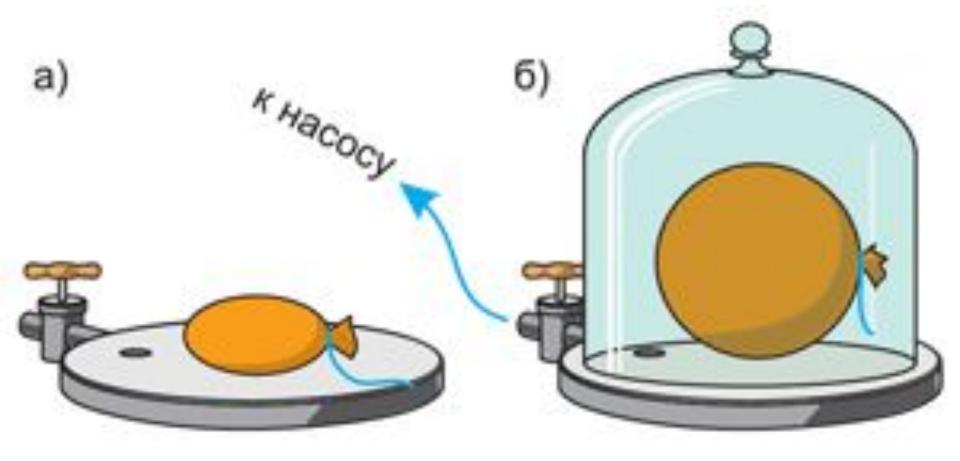
структу ры задачи				я задач
Анализ	расчленени е информаци и на составные части, выявление взаимосвязе й	обсуждает раскрывает перечисляет анализирует разделяет на части разбирает критически	исследует руководит стимулирует наблюдает предоставля ет ресурсы	проанализируйт е, разделите на части, разыщите, найдите, определите, различите, проверьте, сравните, классифицируйт е, опровергните

денствия

педагога

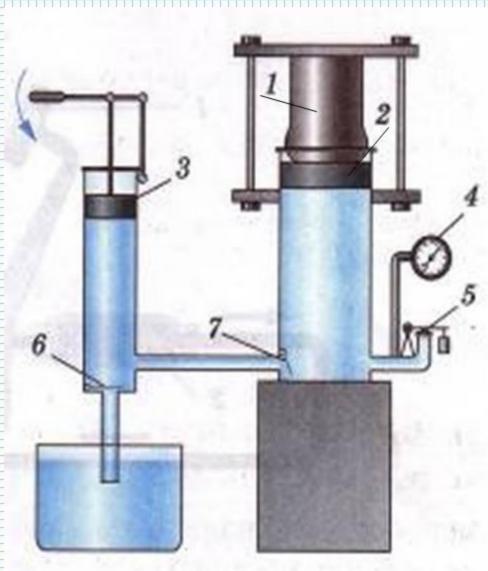
тлаголы для

конструировани


помнон определени действия

ученика

е, смысл


енты

Пониманию учащихся материала, развитию их мышления весьма способствует систематическая и целенаправленная работа с учебником на уроке. Самым важным первоначальным приемом работы с книгой является выделение главного, что требует анализа текста, синтеза результатов анализа и абстрагирование от второстепенного материала. Для обеспечения глубокого понимания изучаемого материала важное значение имеет обучение учащихся работе с рисунками учебника. С первых уроков физики в 7 классе необходимо приучить учащихся при чтении текста обращаться к рисунку, чертежу, таблицам. С этой целью полезно чаще ставить учащимся такие вопросы: что изображено на рисунке? Что говориться об этом рисунке в тексте? Как отражено на рисунке то изменение с телом, которое наблюдается в опыте и описывается в тексте учебника?

Компон енты структу ры задачи	Определен ие, смысл	Действия ученика	Действия педагога	Глаголы для конструировани я задач
Применение .	использова ние правил, концепций, принципов, теорий, идей в новых ситуациях, «перенос»	решает новые проблемы, доказывает отбирает организует инициирует вырабатывает конструирует	показывает оказывает содействие поддерживае т наблюдает критикует обсуждает	примените, попробуйте на практике, используйте, употребите, решите, докажите, покажите, проиллюстрируй те, сделайте отчет

Гидравлический пресс

- 1 прессуемое тело ;
- 2 платформа большого поршня;
- 3— малый поршень, создающий давление на жидкость;
- 4 манометр;
- 5— предохранительный клапан, автоматически открывается, когда давление превышает допустимое;
- 6 клапан, через который засасывается жидкость в малый цилиндр при подъёме поршня;
- 7 клапан открывается при закрытии клапана 6 и жидкость попадает в большой цилиндр.

енты структу ры задачи	е, смысл	ученика	педагога	конструировани я задач
Оценка	оценивание значения материала или идей на основе определённ ых критериев или стандартов	судит, оценивает обсуждает, подвергает сомнению формирует составляет, высказывает своё мнение	принимает, допускает соглашается признаёт раскрывает критерии гармонизиру ет, согласовыва ет	составьте мнение, придите к выводу, отберите, выберите, оцените, разберите, обсудите, проверьте, аргументируйте, рекомендуйте, определите, оправдайте, убедите

деиствия

1 лаголы для

компон | Определени | деиствия

В объяснение нового материала целесообразно включать фронтальные опыты и эвристически поставленные фронтальные лабораторные работы. Фронтальные опыты - кратковременные фронтальные лабораторные работы, которые одновременно выполняются всеми учащимися класса под руководством учителя. Фронтальные опыты, учат школьников наблюдать и анализировать явления, способствуют развитию мышления.

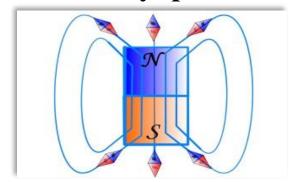
Результаты экспериментов

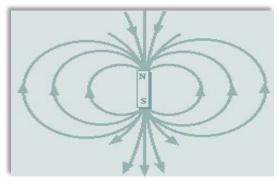
1. Зависимость силы трения от нагрузки.

т(кг)		
F _{тр} (H)		


2. Зависимость силы трения от площади соприкосновения трущихся поверхностей.

S(cm ²)		
F _{тр} (H)		


Свойства постоянных магнитов.

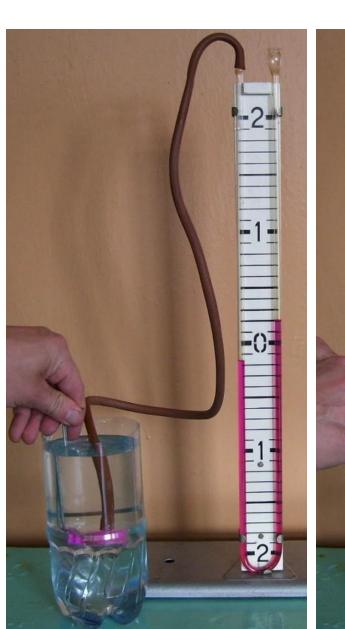

В 1600г. английский врач Г.Х.Гилберт вывел основные свойства постоянных магнитов.

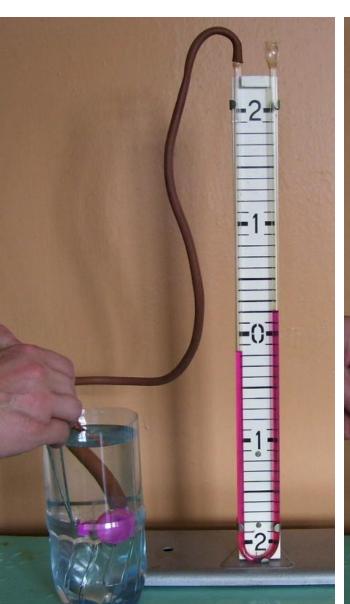
1. Разноименные магнитные полюса притягиваются, одноименные отталкиваются.

2. Магнитные линии — замкнутые линии. Вне магнита магнитные линии выходят из «N» и входят в «S», замыкаясь внутри магнита.

При проблемном обучении познавательную деятельность учащихся стремятся организовать по логике развертывания познавательного творческого процесса, а именно:

- 1. Создают проблемную ситуацию, анализируют ее и в ходе анализа подводят учащихся к необходимости изучения определенной проблемы.
- 2. 2. Включают учащихся в активный поиск решения проблемы на основе имеющихся знаний и мобилизации познавательных способностей. В отдельных случаях можно организовать предварительное изучение тех знаний, которые могут помочь учащимся решить проблему. Выдвигаемые в ходе поиска гипотезы и догадки должны подвергаться анализу, с тем, чтобы найти наиболее рациональное решение.
- 3. Предлагаемое решение проблемы проверяется иногда теоретически, чаще экспериментально. Проблема решается, и на основе этого решения делается вывод, который несет в себе новое знание об изучаемом объекте. В процессе решения проблемы выясняется необходимость исследования других сторон изучаемого объекта. В результате учащиеся добывают некоторую систему знаний.



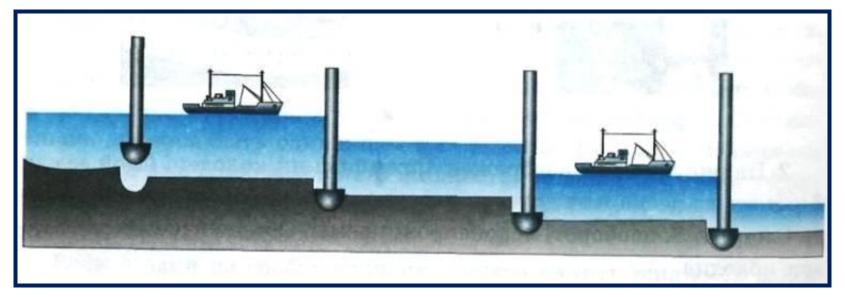

По мере погружения коробочки в воду давление на коробочку...


Увеличивается!

- •Почему?
- •На сколько оно увеличилось?

Для создания проблемной ситуации на уроках физики необходимо выявить возможные типы противоречий, которые могут возникать в ходе изучения физики. Исследования показывают, что на уроках физики можно для создания проблемных ситуаций использовать три типа противоречий: Противоречия между жизненным опытом учащихся и научными знаниями.

Два кофейника. Ширина их одинакова, а высота разная.


В какой из них можно налить больше жидкости? Почему?

Для развития логического мышления учащимся в процессе обучения необходимо предоставлять возможность самостоятельно проводить анализ, синтез, обобщения, сравнения, строить индуктивные и дедуктивные умозаключения и т. д. Такая возможность предоставлять учащимся при ведении урока методом беседы. В практике обучения эвристическая беседа, кроме вопросов, рассчитанных на мыслительную деятельность логического уровня, может включать (и часто включает) вопросы и задания, требующие от учащихся высказываний интуитивного характера (догадки, выдвижения возможных предположений и т. д.). Эти частичнопоисковые задания придают эвристической беседе совершенно иной, исследовательский характер.

Схема устройства шлюза

СХЕМА ШЛЮЗОВАНИЯ СУДОВ

На самом высоком уровне активизации познавательной деятельности учащихся, при котором развивается творческое мышление, можно использовать проблемное обучение физике и частично-поисковые задания с учетом разнообразных форм и средств активизации познавательной деятельности, рассматриваемых при:

- 1. решение задач;
- 2. создании презентации;
- 3. выполнении проектов.