
Контрольная работа M2 по теме «Молекулярная физика» студента *ГБПОУ «НХТК»* группы____ Фамилия, имя _____ Вариант

У вас осталось меньше 1 минуты

ТЕРМОДИНАМИКА

МОДУЛЬ 3

ТЕРМОДИНАМИКА

- 1. Теплообмен.
- 2. Законы термодинамики.
- 3. Тепловые двигатели

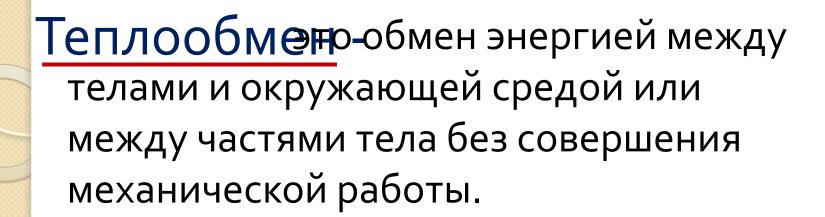
Домашнее задание:

- 1.Выучить конспект.
- 2. Подготовить сообщение по теме «История создания теплового двигателя»

Теплообмен. Топливо

Невинномысский химический колледж Преподаватель физики Гонашвили Вера Алексеевна

Термодинами се ория тепловых процессов, в которых не учитывается молекулярное строение тел.


Внутренняя энергия - энергия покоя.

Она складывается из

- теплового хаотического движения молекул,
- -потенциальной энергии их взаимного расположения,
- -кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах, и так далее.

Изменение внутренней энергии тела всегда связано с его взаимодействием с другими телами или с окружающей

средой.

Виды теплообмена

<u> 1 ТЕПЛОПРОВОДНОСТЬ.avi</u>

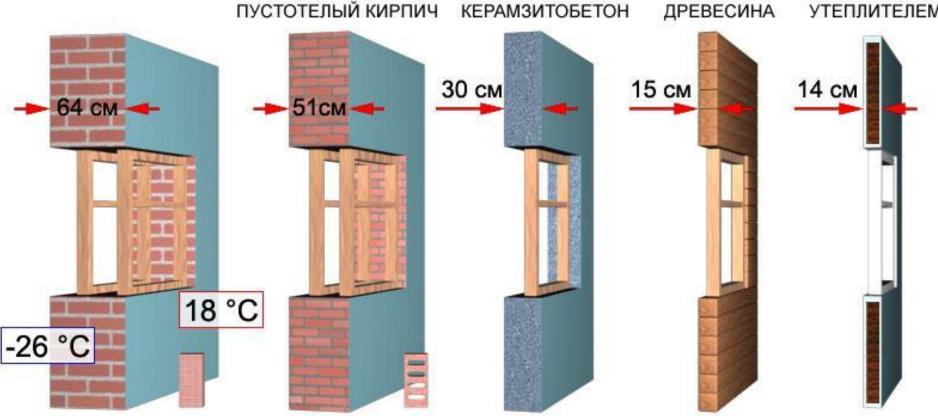
<u> ОБЪЯСНЕНИЕ КОНВЕКЦИИ</u>

<u> 9 ИЗЛУЧЕНИЕ.avi</u>

Теплопроводность – явление передачи внутренней энергии от одного тела к другому или от одной его части к другой. Само вещество не перемещается вдоль тела- переносится лишь энергия.

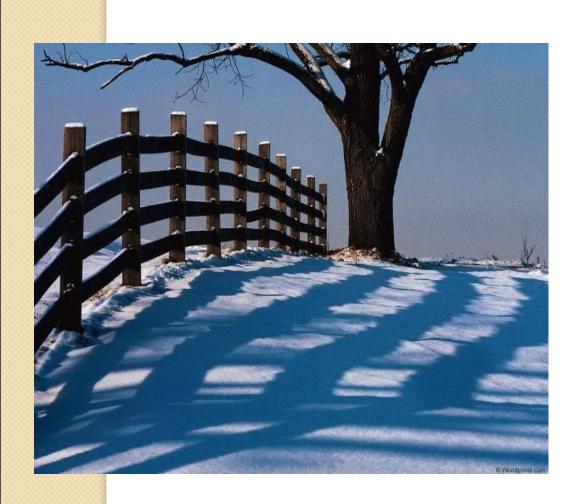
Механизм теплопроводности

Металлический стержень нагреваем в точке В. Амплитуда колебаний атомов в узлах кристаллической решетки в точке А меньше, чем в точке В. Вследствие взаимодействия атомов друг с другом амплитуда колебаний атомов, находящихся рядом с точкой В, возрастает, затем возрастает амплитуда колебаний атомов в т. А.


Теплопроводность различных веществ

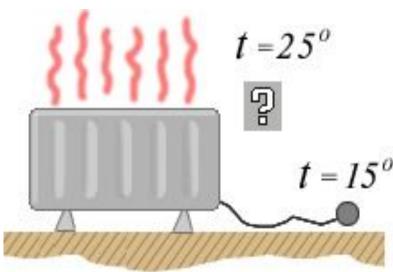
Металлы обладают хорошей теплопроводностью благодаря тому, что свободные электроны переносят часть энергии

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ


БЕТОННАЯ ПАНЕЛЬ С УТЕПЛИТЕЛЕМ

ШКАЛА ТОЛЩИНЫ МАТЕРИАЛОВ ПРИ ОДИНАКОВОЙ ТЕПЛОПРОВОДНОСТИ

ТЕПЛОПРОВОДНОСТЬ В ПРИРОДЕ


Снег предохраняет озимые посевы от вымерзания.

Конвекция – перенос энергии самими струями газа или жидкости.

Конвекция в твердых телах и вакууме происходить не может

Механизм конвекции в газах

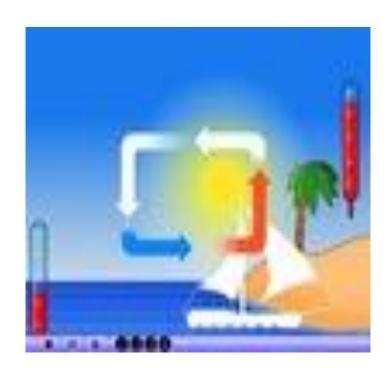
Теплый воздух расширяется, его объем увеличивается плотность уменьшается, сила Архимеда, действующая на него увеличивается, теплый воздух поднимается вверх.

Тяга

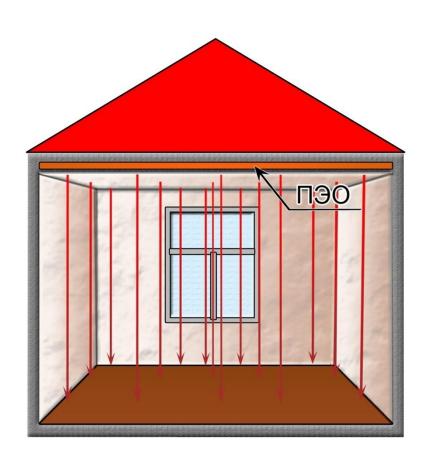
Давление в печи меньше давления наружного воздуха

Холодный воздух устремляется в топку, тёплый поднимается вверх по трубе

Чем выше труба, тем больше тяга



Обратная тяга


Обратная тяга (опрокидывание тяги) — отсутствие разрежённости в дымовом или вентиляционном канале, препятствующее удалению продуктов сгорания от работающих приборов или удалению отработанного воздуха из помещения в атмосферу.

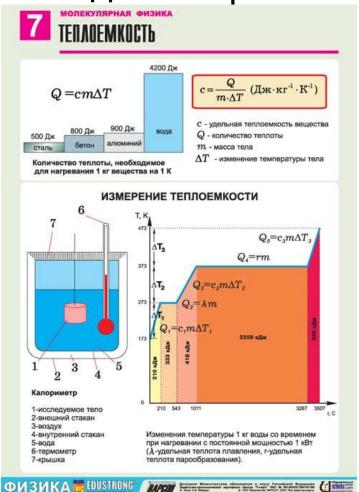
Условием для возникновения пожара с обратной тягой является недостаточный доступ кислорода в помещение. Взрыв нагретых газов может произойти после открытия двери или окна

Конвекция в природе

Конвекция в быту

ЛУЧИСТЫЙ ТЕПЛООБМЕН

- это теплопередача, при которой энергия переносится различными лучами (инфракрасными, ультрафиолетовыми, рентгеновскими, гамма-лучами).


Количество теплоты

 это мера изменения энергии в процессе теплообмена.

$$Q = cm\Delta t$$

С - удельная теплоемкость

- это количество теплоты, необходимое

Пример:
$$C = 4200 \frac{\cancel{\cancel{134c}}}{\cancel{\cancel{\kappa}}\cancel{\cancel{2}}\cancel{\cancel{0}}}C$$

$$C = \frac{4200\, {\it Дэвc}}{1\kappa \it{e}\cdot 1^{0}\, \it{C}}$$
 - это значит, что

для нагревания 1 кг воды на 1^{0}

необходимо 4200 Дж энергии.

Топливо — это вещество, которое используют для получения энергии.

При сгорании топлива выделяется энергия т.к.

в топливе содержится углерод, который высвобождается и соединяется с кислородом, образуя молекулу углекислого газа.

Когда образуется молекула, выделяется энергия.

Каждый атом углерода соединяется с двумя атомами кислорода. Поэтому при горении топлива расходуется много кислорода.

Q = qm

¬удельная теплота сгорания

топливα- это количество теплоты, которое выделяется при полном сгорании 1 кг топлива.

Например: удельная теплота сгорания бензина 4,6 *10 7 Дж/кг — это означает, что при полном сгорании 1 кг бензина выделяется $4,6\cdot10^7$ Дж энергии.

Подумай! Рассчитай!

• Смешали 10 кг воды при 90⁰ С и 5 кг воды при 27⁰ С. Определите конечную температуру воды в случае, если не было потерь тепла.

 Сколько литров воды при 15 и 100⁰ С нужно смешать, чтобы получить 350 л воды при 45⁰ С

$$\begin{bmatrix} m_1(t_1 - t) = m_2(t - t_2) & m_2 = \frac{m(t_2 - t)}{t_2 - t_1} \\ m_1 = m - m_2 & m_2 = 226,5\kappa z \end{bmatrix}$$

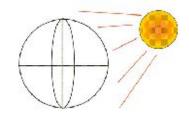
Подумай! Рассчитай!

- 1. Удельная теплоемкость алюминия 920 Дж/кг*К.
 Что это означает?
- 2.Рассчитайте количество теплоты, необходимое для нагревания чугунного утюга массой
 1,5 кг для изменения его температуры на 200°.
- 3. Рассчитайте количество теплоты, необходимое для нагревания алюминиевой ложки массой 50 г от 20° до 90° С.
- 4.Рассчитайте количество теплоты, необходимое для нагревания кирпичной печи массой 2т. От 10° до 60° С.

- 5. Какое количество теплоты выделилось при остывании воды, объем которой 20 л, если температура изменилась от100° до 50°?
- 6. На сколько изменится температура воды в стакане, если ей сообщить количество теплоты, равное 10 Дж? Вместимость стакана 200 см³.
- 7. Вычислите, на сколько градусов нужно повысить температуру свинца массой 100 г, чтобы внутренняя энергия его увеличилась на 280 Дж?
- 8. Определите удельную теплоемкость металла, если для изменения температуры от 20° до
 24° С, у бруска массой 100 г, сделанного из этого металла, внутренняя энергия увеличилась на 152 Дж. Какой это металл?

Задание на дом:

глава 6, §1 – 6, конспект параграфа 6.3


Металлы- хорошо Жидкости - <u>хуже</u> Газы - <u>плохо</u> Вакуум - <u>практически нет</u> Теплоизоляция!

Конвекция

Жидкости - да Газы- да Твердые тела - <u>нет</u>, т.к. Частицы сильно взаимодействуют!

Излучение

Излучает Любое нагретое тело - хуже

- лучше

<u>Поглощает</u> - хуже

- лучше

Рис. 3