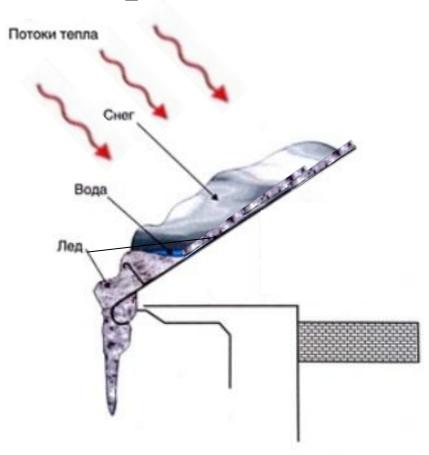
Осторожно: снегосход!

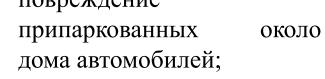
Исследование зависимости дальности полета снега при его сходе с крыши от факторов, влияющих на неё

СОДЕРЖАНИЕ

- 1. Введение
- Цели и задачи
- з. Основная часть
 - 1) Динамика движения снега
 - 2) Анализ уравнений движения снега
- 3) Вычисление дальности полета снега при сходе его с крыши школы
- 4. Заключение
- Литература

ВВЕДЕНИЕ


Большая часть нашей страны расположена в тех климатических поясах, где зимой устанавливается постоянный снежный покров. Причем образуется он не только на земле в виде сугробов, но и на кровлях зданий. Ежегодно сходящие с крыш снежные лавины не только причиняют ущерб хозяйственным объектам, но и уносят жизни людей.


Почему снег сходит с крыш?

Во время оттепели нижний слой снега подтаивает и образует ледяную корку, а нарастающая за зиму масса снежного покрова в конечном итоге срывает ее с места и заставляет двигаться вниз по скату кровли, из-за чего и возникают лавинообразные сходы снега с крыш.

Последствия

повреждение припаркованных дома автомобилей;

деформированные скаты крыши;

бороться со снежнь

гибель травмы и людей, тяжелые попавших пол павину

сорванная водосточная система;

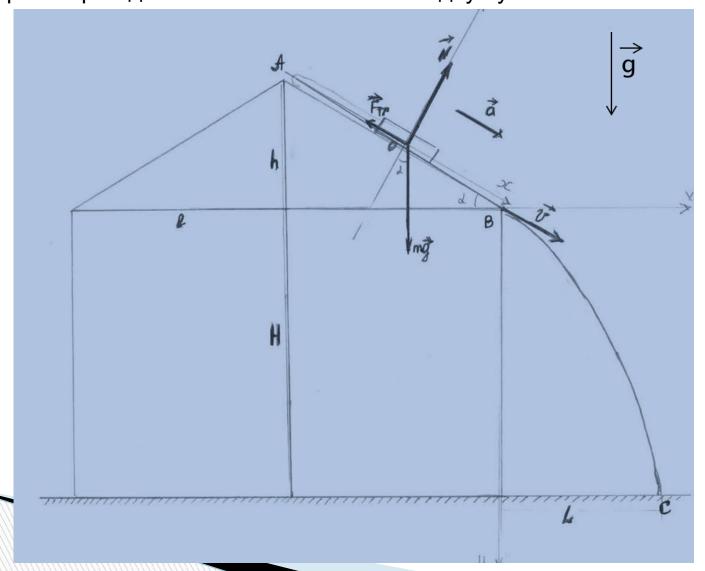
Для предотвращения таких ситуаций необходимо проводить следующие мероприятия:

регулярная очистка кровли

установка специальных кровельных конструкций - снегозадержателей

огораживание весной территорий, прилегающих к стена зданий

ЦЕЛИ И ЗАДАЧИ


□ Поскольку в нашей школе основное мероприятие, обеспечивающее безопасность – огораживание опасных с точки зрения снега территорий, то мы посчитали актуальным выяснение факторов, от которых зависит расстояние, на котором следует выставлять такое ограждение вблизи стен зданий.

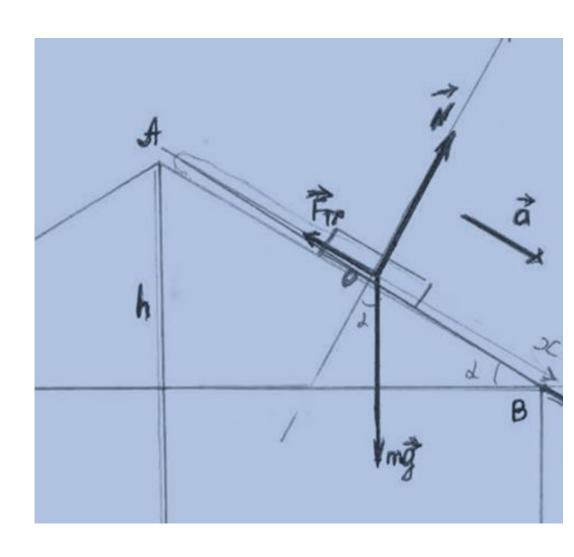
основная часть

1. Динамика движения снега

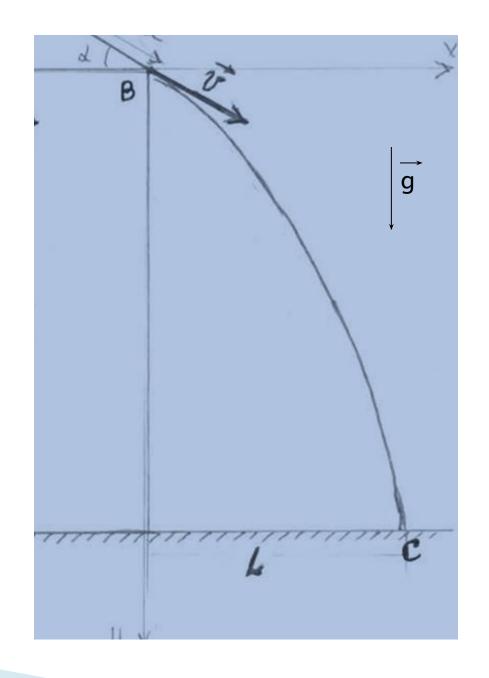
Вся траектория движения снега состоит из двух участков: АВ и ВС

На участке АВ снег движется равноускорено под действием трех сил:

а) силы тяжести $F_{\text{тяж}} = mg$, здесь m - масса снега,


$$g = 9,8 \frac{M}{c^2}$$
 – ускорение

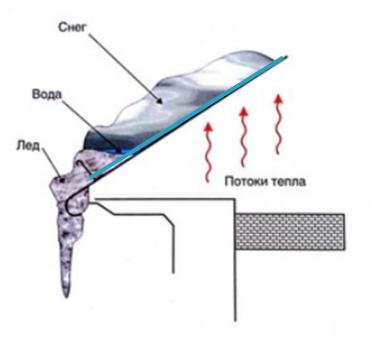
свободного падения,


б)силы трения $F_{\rm Tp} = \mu N$,

здесь µ - коэффициент трения скольжения,

N – реакция опоры, в)реакции опоры N.

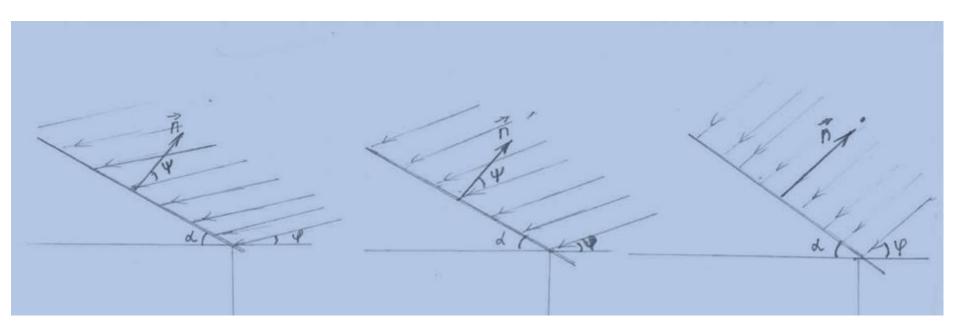
 На участке ВС снег движется под действием силы тяжести, сопротивление воздуха мы не учитывали, т. к. плотность снега весной велика по сравнению с плотностью воздуха.


□ Основная причина, по которой начинается сход снега – изменение силы трения, а именно: коэффициента трения.

Коэффициент трения зависит:

• от характера соприкасающихся при движении тел

• наличия смазки между ними.


Смазка в данном случае — вода. Она образуется от таяния снега, интенсивность этого процесса зависит от энергии теплового излучения Солнца, поглощаемой снегом, кровлей W.

 $W \sim P_{\text{солнца}} \cdot S_{\text{крыши}} \cdot \cos \psi \cdot t$, здесь $P_{\text{солнца}} - \text{солнечная постоянная}$

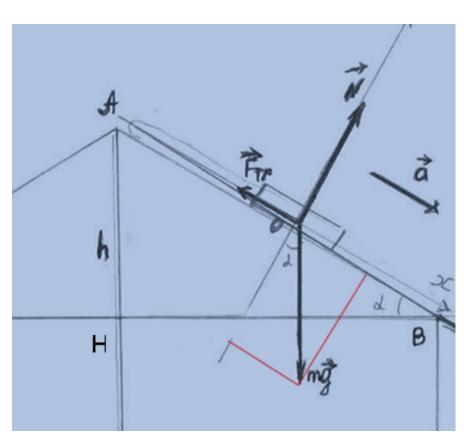
 $S_{
m kpышu}$ – площадь крыши

 Ψ — угол между нормалью к поверхности крыши и солнечными лучами

t – долгота дня.

дата	22 января	22 февраля	22 марта
Угловая высота Солнца в полдень	$\varphi_{_{\mathrm{SHB}}} = 13,5^{\circ},$	φ _{фев} = 22,4°	ф _{март} = 33,3°
Долгота дня	08ч 08мин	10ч12мин	12ч18мин

Поглощение энергии зависит также от теплопроводности материала кровли.


Из таблицы различных строительных материалов:

Материал	Теплопроводность Вт/(м*С)
Асбест (шифер)	0,35
Алюминий	230
Снег	1,5

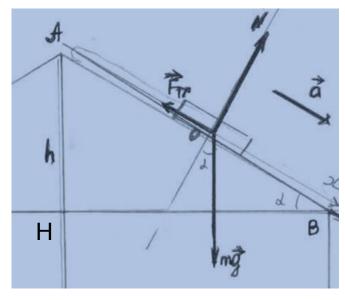
$$\vec{a} = \frac{\vec{F}}{m},$$

$$F = F_{msж} + F_{mp} + N$$
 $F_{msж} + F_{mp} + N = ma.$

$$\begin{cases} F_{\text{mяж x}} + F_{\text{mpx}} + N_{x} = ma_{x} \\ F_{\text{mяжy}} + F_{\text{mpy}} + N_{y} = ma_{y} \end{cases}$$

$$m \cdot g \cdot \sin \alpha - \mu N = ma$$

 $-m \cdot g \cdot \cos \alpha + N = 0$


 $a = g(sin\alpha - \mu \cdot cos\alpha)$, здесь α — угол наклона крыши к горизонту

Тогда
$$a = \frac{g(h-\mu l)}{\sqrt{h^2+l^2}}$$

При равноускоренном движении (при условии $v_0 = 0$):

1.
$$v = at$$

2.
$$S = \frac{at^2}{2}$$

$$\sin \alpha = \frac{h}{\sqrt{h^2 + l^2}}, \cos \alpha = \frac{l}{\sqrt{h^2 + l^2}},$$

$$v = \sqrt{2aS} = \frac{\sqrt{2g(h-\mu l)}}{\sqrt{h^2 + l^2}} \cdot \sqrt{h^2 + l^2} = \sqrt{2g(h-\mu l)}$$
 (1)

$$x = v_x t + \frac{g_x t^2}{2}$$
$$y = v_y t + \frac{g_y t^2}{2}$$

здесь t – время падения,

$$y = v_y t + \frac{g_y t^2}{2}$$

x = L - дальность полета,

y = H - высота падения,

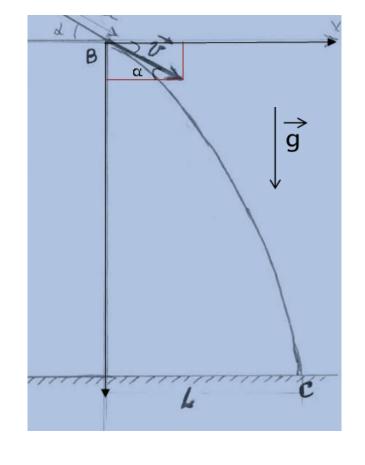
Т.к. $g_x = 0$, то $x = v_x \cdot t$, тогда:

$$(2).L = v \cdot cos\alpha \cdot t$$

 $v_x = v \cdot cos\alpha - проекция$

скорости снега на ось X,

$$(3).H = v \cdot \sin\alpha \cdot t + \frac{gt^2}{2}$$

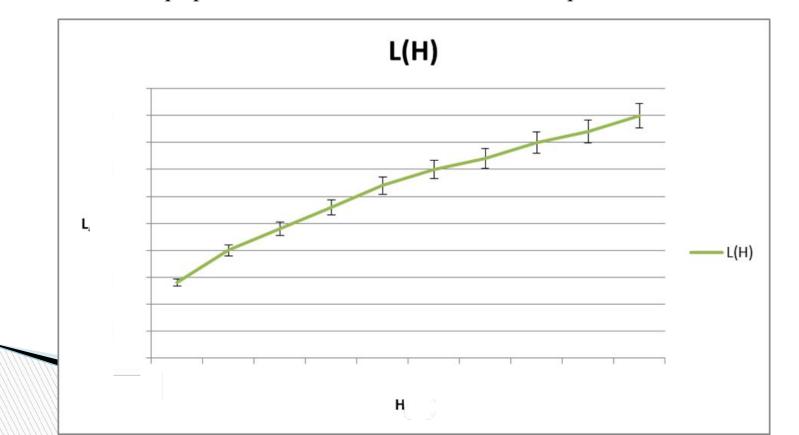

 $v_y = v \cdot sin \alpha - проекция$

скорости снега на ось Ү

Решая второе уравнение относительно t, определили

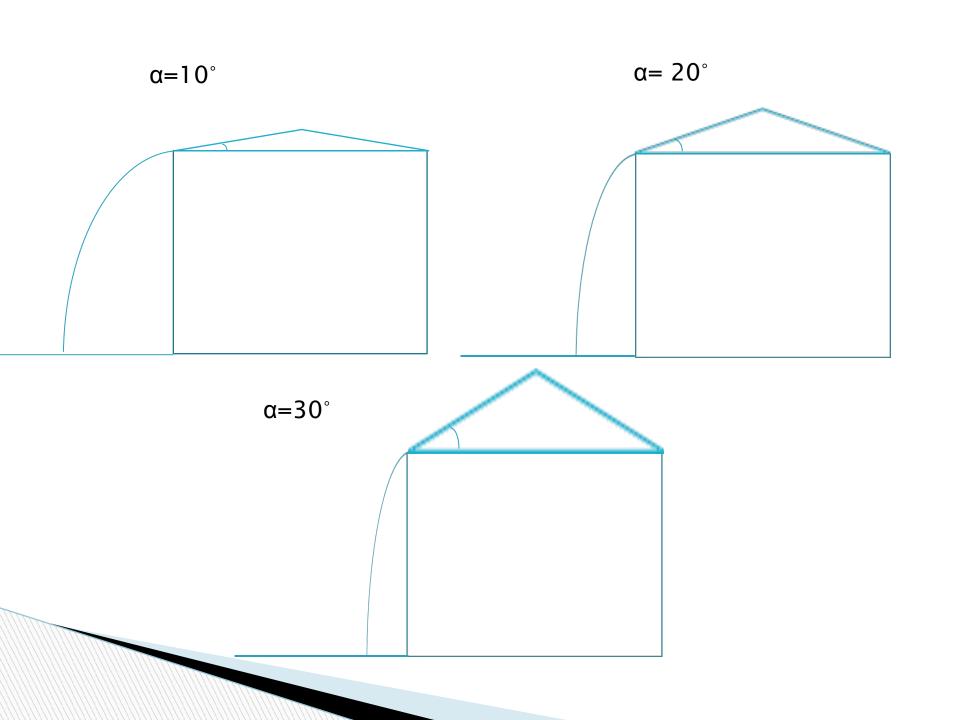
$$t = \frac{-\upsilon \cdot \sin\alpha + \sqrt{\upsilon^2 \sin\alpha^2 + 2gH}}{g}.,\tag{4}$$

$$L = v \cdot \cos\alpha \frac{-v \cdot \sin\alpha + \sqrt{v^2 \sin\alpha^2 + 2gH}}{g}.$$
 (5)



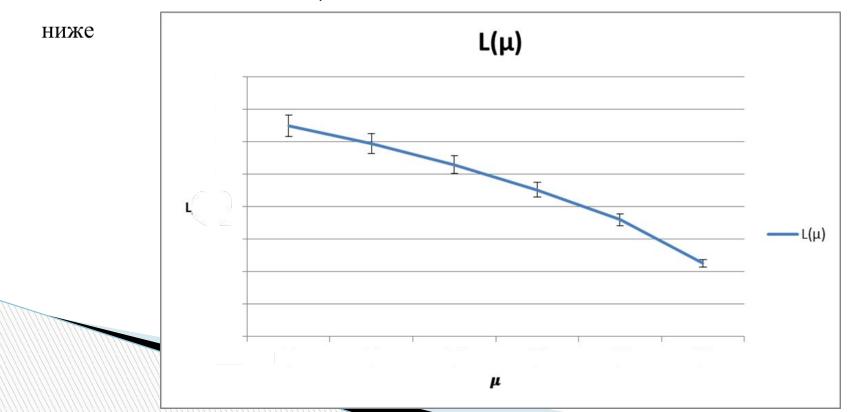
2. Анализ уравнений движения снега

1. Зависимость дальности полета от высоты здания


Из уравнения
$$L = \upsilon \cos \alpha \frac{-\upsilon \sin \alpha + \sqrt{\upsilon^2 \sin \alpha^2 + 4gH}}{g}$$
 (4) видно,

что $L \sim \sqrt{H}$. Графически качественная зависимость представлена ниже

2.Зависимость дальности полета от угла наклона кровли



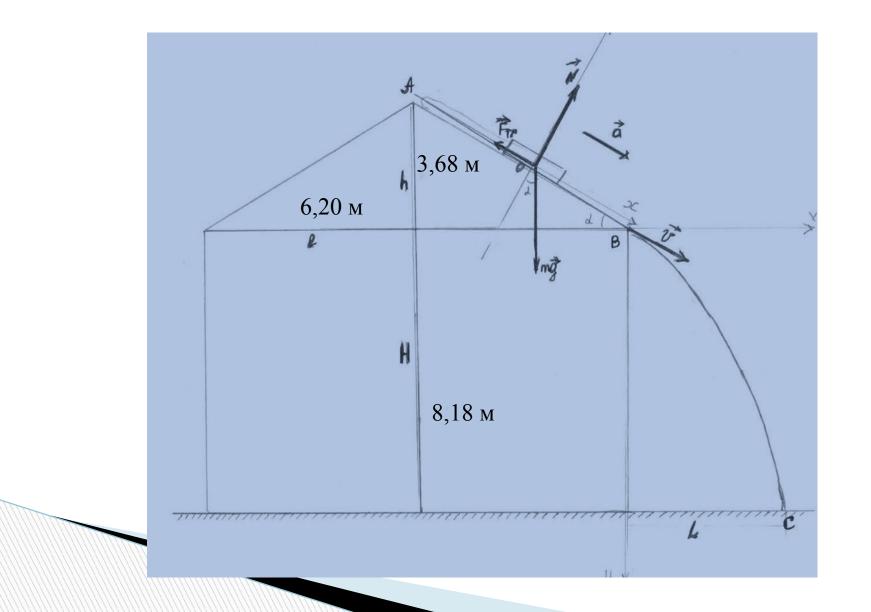
3.Зависимость дальности полета от коэффициента трения скольжения

Для выяснения зависимости дальности полета от коэффициента трения скольжения снега по кровле преобразовали уравнение (1), учитывая (5).

$$L = v \cos \alpha \cdot t = \sqrt{2g(h - \mu l)} \cos \alpha \cdot t, \qquad (6)$$

из которого видно, что $L \sim \sqrt{\mu}$. Графически качественная зависимость представлена

3.Вычисление дальности полета снега при сходе его с крыши школы


$$tg \beta = \mu, \beta = 20^{\circ}$$

Применив формулы

$$v=\sqrt{2g(h-\mu l)},$$
 $t=rac{-v\cdot sin\ \alpha+\sqrt{v^2sin\ \alpha^2+2gH}}{g},$ $L=v\cdot cos\alpha\cdot t$, вычислили $L=4,78$ м.

Из проектно-сметной документации школы

Взяв лист металлопрофиля и транспортир, измерили угол наклона листа β, при котором снег начинает скользить:

$$\beta=20^{\circ}$$

Т.к.
$$tg \beta = \mu$$
, то $\mu = 0.36$

$$\sin \alpha = \frac{h}{\sqrt{h^2 + l^2}}$$

$$\sin \alpha = \frac{3,68 \text{ M}}{\sqrt{(3,68 \text{ M})^2 + (6,2 \text{ M})^2}} = 0,51$$

По уравнению (1) находим скорость, с которой снег срывается с крыши:

$$v = \sqrt{2g(h - \mu l)},$$

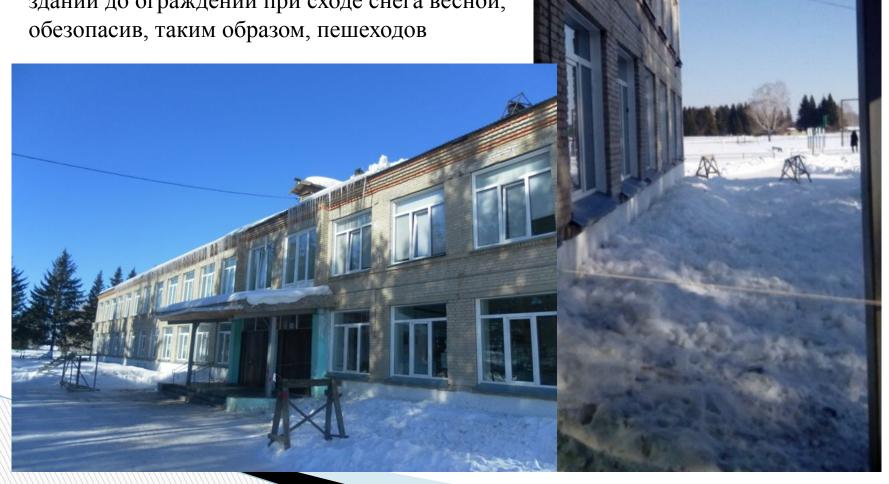
$$v = \sqrt{2 \times 10 \frac{M}{c^2} (3,68 \text{ m} - 0,36 \times 6,2 \text{ m})} = 5,38 \frac{M}{c}$$

Вычисляем косинус угла наклона кровли:

$$\cos \alpha = \frac{l}{\sqrt{h^2 + l^2}},$$

$$\cos \alpha = \frac{6.2 \text{ M}}{\sqrt{(3.68 \text{ M})^2 + (6.2 \text{ M})^2}} = 0.86$$

Согласно выражению (4), вычисляем время, за которое снег пройдет расстояние, равное Н:


$$t = \frac{-\upsilon \cdot \sin \alpha + \sqrt{\upsilon^{2} \sin \alpha^{2} + 2gH}}{g}$$

$$t = \frac{-5.38 \frac{M}{c} \times 0.51 + \sqrt{(5.38 \frac{M}{c})^{2} 0.51^{2} + 2 \times 10 \frac{M}{c^{2}} \times 8.18 M}}{10 \frac{M}{c^{2}}} = 1,034 c$$

Теперь по уравнению (2) вычислим расстояние L, на котором упадет снег:

$$L = \upsilon \cdot cos\alpha \cdot t$$

 $L = 5,38 \frac{M}{c} \times 0,86 \times 1,034 c = 4,78 м.$

Расстояние от стены здания школы, на котором было выставлено ограждение, было равно 5 м, снег падал в его пределах. Т.о. наши теоретические расчеты получают практическое подтверждение. Следовательно, их можно применить, рассчитывая расстояния от стен зданий до ограждений при сходе снега весной, обезопасив, таким образом, пешеходов

Заключение

Выполняя данную работу, мы обнаружили практическое подтверждение законов динамики и кинематики. В ходе работы мы выяснили, что наибольшее влияние на сход снега с крыши имеет коэффициент трения. Поэтому данная работа может иметь логическое продолжение: проведение исследований зависимости коэффициента трения скольжения от материала кровли, от её температуры, а также составление соответствующих таблиц, которые в значительной степени облегчат расчеты при выполнении работ по ограждению опасных участков вблизи стен при весенних «снегосходах».

Литература

- 1. Касьянов В.А. Физика. 10 кл. Профильный уровень: учебник для общеобразовательных учреждений Дрофа Москва 2005г
- 2. В.А. Физика.11кл. Профильный уровень: учебник для общеобразовательных учреждений Дрофа Москва 2007г
- 3. Б.А.Воронцов-Вельяминов, Е.К.Страут Астрономия, 11 класс учебник для общеобразовательных учреждений Дрофа Москва 2009г
- 4. Савельев И.В
 Курс общей физики:
 Учебник
 Формат:

 PDF Количество
 страниц:
 1493.

 mirknig.com>2007/10/24/kurs obshheji fiziki.html

Спасибо за внимани