<u>Санкт-Петербургский государственный университет</u> <u>телекоммуникаций имени проф. М.А. Бонч-Бруевича</u>

> Дисциплина «Экология» Мультимедийный курс. Лекция 4.

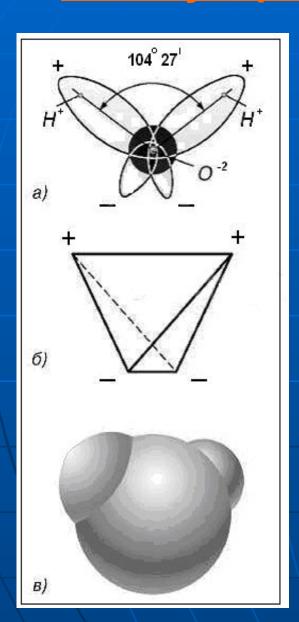
Организм и среда.
Водная среда жизни. Экологические свойства воды. Экологические группы водных организмов.

Кафедра Экологии и безопасности жизнедеятельности СПБГУТ

Вода на Земле

- В настоящее время 74 % поверхности Земли как планеты покрыта водой это <u>океаны, моря, озера, реки, ледники</u>.
- Все водные объекты занимают площадь более 362 млн. км кв. Водная поверхность и суша распределены неравномерно.
 В Северном полушарии на долю суши приходится 100 млн. км кв., или 39 % от общей площади.
- В Южном полушарии 49 млн. км кв., или 19 % от общей площади.
- Суммарные запасы свободной воды на Земле составляют около 1,386 млрд. км куб. Основное количество воды содержится в океанах и морях около 96 %.
- На материках сосредоточено около 34 млн. км куб. воды, причем из этого количества не менее 90 % приходится на подземные воды.
- В виде льда на нашей планете находится примерно 25 млн. км куб. воды от общего количества.
- <u>В реках</u> содержится 2,2 тыс. км куб., <u>в озерах</u> 180 тыс. км куб.
- В атмосфере постоянно содержится около 13 тыс. км куб. воды (0,001 % от общего).
- Совокупность всех природных вод в океане и морях, на суше, в ледниках, в земной коре и в атмосфере формирует Гидросферу Земли.

Гидрологический цикл


Постоянный активный кругооборот воды между океаном, атмосферой и водными объектами суши называется <u>гидрологическим циклом</u>. Его движущей силой является энергия Солнце, а основным источником воды – Мировой океан. Около 25 % всей падающей на Землю солнечной энергии расходуется на испарение воды. Ежегодно таким образом в атмосферу поднимается 511 тыс. км куб. воды, из них с поверхности океана 411 тыс. км. куб. Примерно 2/3 атмосферной воды возвращается в виде осадков обратно в океан, а 1/3 выпадает на сушу.

Водная среда обитания

- Вода первая среда обитания, в которой возникла и начала распространяться жизнь. Произошло это примерно 3,9 млрд. лет назад. Благоприятные условия для синтеза сложных органических молекул создавались в порах увлажненных минеральных пород, например реголита.
- Первые живые организмы протобионты, сформировав защитную полупроницаемую мембрану, смогли достаточно широко распространиться в открытых районах древних морей и продолжить свое эволюционное развитие.
- *Фотосинтез* морских водорослей возник около 2,8 млрд. л.н.
- Выход первых растений на сушу состоялся около 450 млн. лет назад в силурийском периоде. На протяжении более 3 млрд. лет, эволюция жизни происходила только в водной среде.
- Из 63 известных классов животных 60 классов возникли именно в морях и океанах, а из 32 классов растений типично водными являются 18 классов. Древняя эволюционная связь с морской водой сохранилась у большинства наземных животных, а также у человека в химическом составе крови.
- Все организмы живущие в воде называются <u>гидробионтами.</u>

Молекулярное строение и свойства воды

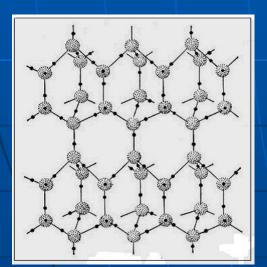
Чистая вода - прозрачная жидкость без вкуса, цвета и запаха. Молекула воды состоит двух атомов водорода и одного атома кислорода. Так как водород имеет 3 изотопные формы, а кислород – 6, то существует 36 разновидностей воды, из которых в природных условиях обнаружено 9. Основную массу природной воды образуют молекулы *H12O16 (99,73*) свойствам тяжелая вода весом более 18) существенно отличается от обычной. Например, вода, содержащая дейтерий, плотнее обычной на 10,8 %, замерзает при 3,3 °C, кипит при 101,4 °C, кроме того, обладает повышенной на 23 % вязкостью.

Молекулярная масса обычной воды равна 18,016 а.е.м. Молекула воды нелинейная, угол между связями Н-О-Н составляет 104°27′. Связи Н-О ковалентные полярные, электронная плотность смещена к атому кислорода. Поэтому атом кислорода способен притягивать атом водорода соседней молекулы воды, образуя водородную связь. Из-за высокой полярности молекул вода является уникальным растворителем других полярных соединений. Поэтому в воде электролиты легко диссоциируют на ионы.

Аномальные свойства воды

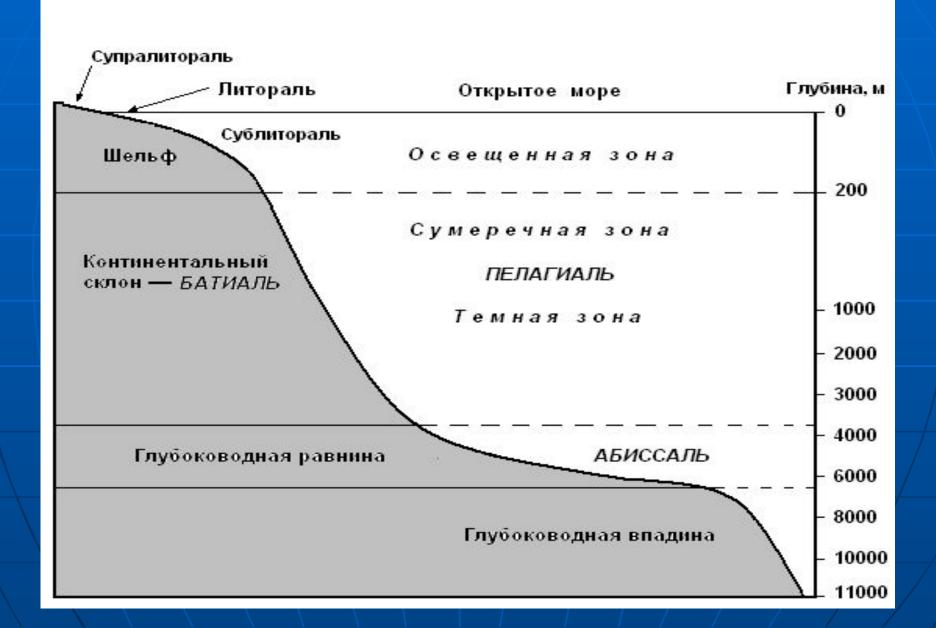
- Многие свойства воды аномальны, т.е. не проявляются у других веществ с аналогичной химической формулой (H2S, H2Se, H2Te и др.). Они определяются специфичностью строения молекулы воды и способные влиять на биологические процессы.
- 1. Вода имеет наибольшую теплоемкость среди жидкостей 4,1868 кДж/кг, что почти вдвое превышает таковую растительных масел, ацетона, фенола, глицерина, спирта, парафина. Благодаря этому теплые океанические течения согревают многие северные регионы планеты, принося тепло из южных широт. Установлено также, что у воды с температурой от 0 °C до 37 °C теплоемкость снижается, а с 37 °C градусов и выше растет. Вода легче всего она нагревается и быстрее всего охлаждается при температуре 37 °C. Данная особенность пока не объяснена, однако совпадение с нормальной температурой здорового человека (36,6 °C 37,0 °C) представляется весьма важным.
- Если бы вода не обладала этим удивительным качеством, тогда бы системе терморегуляции организма потребовалось бы гораздо больше затрат чтобы поддержать температуру нашего тела в области нормальных значений. Ведь уже при 42 °C белок необратимо разрушается, происходит его денатурация распад структуры.

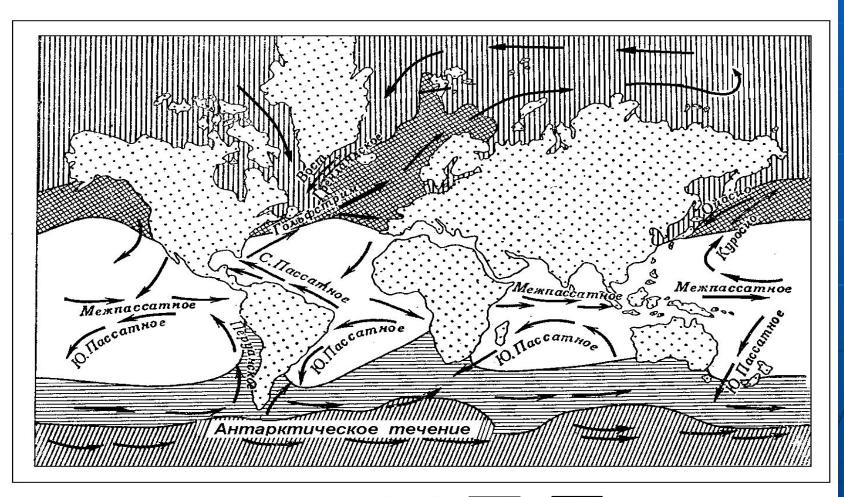

Аномальные свойства воды


- 2. Аномально изменяется плотность воды при нагревании-охлаждении. При понижении температуры от 100 °C до 3,98 °C вода непрерывно сокращается в объеме, и ее плотность составляет порядка 1 г/мл. Но после пересечения границы 3,98 °C наступает обратное явление.
- При кристаллизации плотность резко уменьшается и для льда составляет 0,91 г/мл. Почти у всех остальных веществ кристалл плотнее жидкой фазы.
 - Единица объема воды при 3,98 °C весит больше, чем при 0 °C. При охлаждении ниже 4 градусов образуется лед, он всплывает, но под ним всегда остается вода. Создается некий термос жизнеобеспечения. Не обладай этим свойством вода, все естественные хранилища воды промерзли бы, и жизнь в них могла бы быть представлена в лучшем случае только низшими криофильными бактериями.
- 3. Под действием ультразвука вязкость воды уменьшается.

Аномальные свойства воды

- 4. Вода обладает самым высоким поверхностным натяжением среди всех жидкостей (за исключением ртути). Аномально высокое поверхностное натяжение жидкой воды не только позволяет некоторым насекомым спокойно ходить по её поверхности, но и благодаря капиллярным силам обеспечивает поступление питательных веществ к кронам гигантских деревьев, достигающих нескольких десятков метров в высоту.
- 5. Относительная диэлектрическая постоянная воды равна 80 ед. это очень высокая величина, чем и объясняется ее способность быть универсальным растворителем. Природная вода всегда представляет собой раствор различных химических соединений, большей частью солей и газов. В морской воде найдены почти все элементы таблицы Менделеева.
- 6. Вода легко разлагает соли на отдельные ионы. При этом образующиеся ионы могут соединяться с водой в более сложные группы, находящиеся в состоянии диссоциации. Так как молекулы воды являются диполями, то они неизбежно присоединяются к другим веществами, несущим электрический заряд, и образуют более сложные группы, изменяя структуру воды. Вода слабый электролит и диссоциирует в очень малой степени. Поэтому дистиллированная вода не проводит электрического тока.


Кластерная структура воды


- При объяснении аномальных свойств воды возникло предположение, что на самом деле вода это не единая жидкость, а смесь нескольких компонентов, которые различаются свойствами, например плотностью и вязкостью. Такими компонентами могут быть различные кластерные структуры (С.В. Зенин, Б. Полануэром, 1999 2006).
- Группируясь, тетраэдры молекул воды образуют разнообразные пространственные и плоскостные структуры. Базовой, является всего одна гексагональная (шестигранная), когда шесть молекул воды (тетраэдров) объединяются в кольцо. Такой тип структуры характерен для льда, снега, Каждая молекула воды в кристаллической структуре льда участвует водородных связях, направленных к вершинам тетраэдра. Экспериментально обнаружены кластерные структуры воды включающие в свой состав от 57 до 912 молекул.

Экологические зоны Мирового океана

Схема поверхностных океанских течений и границы широтных зон

Зоны: 1 – арктическая, 2 – бореальная, 3 – тропическая, 4 – южная умеренная; 5 – антарктическая.

Распределение значений солености воды

Водоемы	Сульфаты, %	Хлориды, %	Карбонаты, %	Сопеность, г/л
Пресные воды	13,2	6,9	79,9	менее 0,5
Открытый океан	10,8	88,8	0,4	35
Черное море	9,69	80,7	2,6	19
Каспийское море	30,5	63,3	1,2	12,9
Аральское море	38,7	58,6	0,9	11,3

Распределение значений температуры воды в открытом океане

Широты северные	Средняя температура, °С	Широты южные	Средняя температура, °С
80 -70°	-0,6	0 -10°	26,7
70 -60°	2,9	10 -20°	25,2
60 -50°	6,1	20 -30°	22,1
50 -40°	11,2	30 -40°	17,1
40 -30°	19,1	40 -50°	9,8
30 -20°	23,6	50 -60°	3,1
20 -10°	26,4	60 -70°	3,1
10 -0°	27,3	70 -80°	-0,5

Экологические группы водных организмов

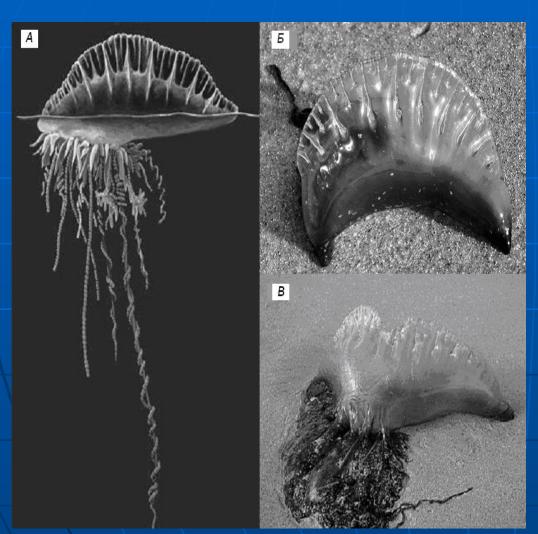
- Планктон (от греч. «planktos» блуждающий, парящий) совокупность низших организмов обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям.
 Фитопланктон- диатомовые, зеленые и сине-зеленые и др. одноклеточные и колониальные водоросли.
 Зоопланктон мелкие животные ракообразные, крылоногие моллюски, медузы, гребневики, личинки кораллов, крабов, моллюсков, икра рыб и т.д.
 Планктон играет важную роль в пищевых (трофических) связях, является пищей для многих водных обитателей, в том числе для всех рыб на стадиях личинки и малька.
- 2. Нейстон (от греч. «neustos» плавающий) совокупность микроорганизмов, растений и животных мелких и средних размеров, обитающих в самой поверхностной зоне водоемов на границе раздела воды и воздуха. В состав нейстона входят водомерки, жукивертячки, одноклеточные водоросли, икра некоторых рыб, планктонные личинки высших ракообразных, бактерии, простейшие и др. Некоторые из них в качестве опоры используют нижнюю поверхность пленки воды. Значительную часть пресноводного нейстона составляют водоросли различных отделов: золотистые золотистые (Chromulina), эвгленовые (Chromulina), эвгленовые (Euglena золотистые (Chromulina), эвгленовые (Euglena золотистые (Chromulina), загленовые (Euglena золотистые установания загленовые (Euglena золотистые установания загленовые (Euglena золотистые установания загленования заг

Экологические группы водных организмов

- 3. Нектон (от греч «nektos» плавающий) объединяет животных, обладающих способностью активно перемещаться в воде, преодолевая силу течений, за счёт развитой мускулатуры и скелета, наличия плавников и эффективных органов ориентации в пространстве. Представителями нектона являются рыбы, кальмары и водные млекопитающие, способные перемещаться на большие расстояния. В пресных водоемах к нектону относятся, кроме рыб, еще и земноводные, а также типично водные насекомые.
- 4. Бентос (от греч «benthos» глубина) это обитатели дна. Организмы обитающие на поверхности грунта и в его толще, в соответствии с чем население дна подразделяется на эпи- и эндобентос. По размерному признаку выделяют организмы микро-, мейо-макробентоса. К микробентосу относятся организмы размером менее 0,1 мм, к мейобентосу от 0,1 до 2 мм, к макробентосу более 2 мм. По способу питания представители зообентоса подразделяются на хищных (плотоядных), растительноядных, детритоядных (питающихся органическими частицами) и т.д.

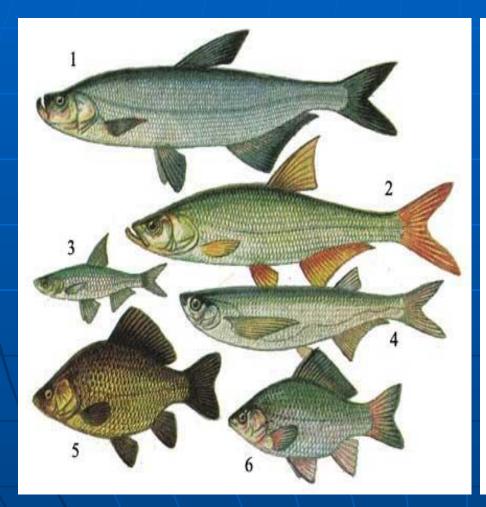
Планктон

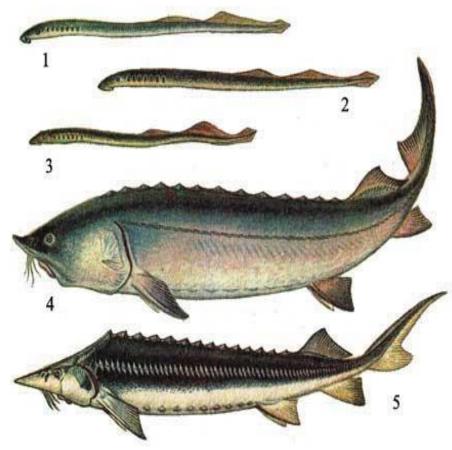
Массовое развитие водорослей фитопланктона во внутренних морях Европы в летний период



Нейстон

Внешний вид представителей морского отряда гидроидов Siphonophorae и пресноводный водяной папоротник Риччия





<u>Нектон</u>

(пресноводные рыбы – сем. карповые, осетровые рыбообразные миноги)

И

<u>Нектон</u>

(морские рыбы – отряд акулообразные, скаты)

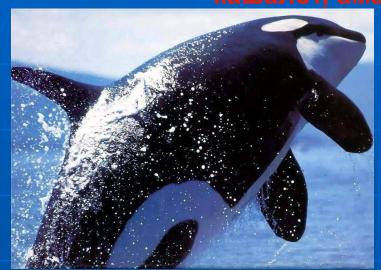
Нектон

(морские рыбы – акулы – большая белая акула, китовая акула,

Нектон – рыбы коралловых рифов

Нектон

<u>(экзотические рыбы - меч-рыба, рыба-зебра, рыба-луна, сельдяной король)</u>



Нектон

(морские млекопитающие – киты – касатка, гренландский кит,

кашалот, амазонский депьфин иния)

Нектон (глубоководные рыбы-хищники)

игпокожие – морские звезды и ежи, ракообразн

Бентос (сообщество кораллового рифа)

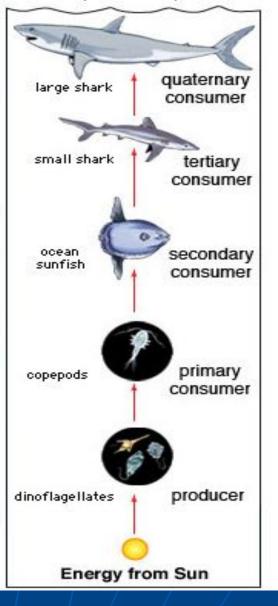
Высшие водные растения (макрофиты)

Растения рек

Цветковые вторичноводные растения

Морские макрофиты

Морские макрофиты


Трофические (пищевые) связи между экологическими группами гидробионтов в Океане

Пищевые сети

lange sharks smaller sharks marlin lancet fish tuna squid mackerel ocean lantern fish sunfish amphipods copepods pteropods shrimp dinoflagellates diatoms **Energy from Sun**

© 2006 Encyclopædia Britannica, Inc.

Пищевые цепи

