МОУ гимназия № 6 г.Гусева Калининградской области

Исследовательская работа:

Химическое исследование питьевой воды.

Автор: Пузыревская С.

ученица 11 класса

Руководитель: Яруллина Е.М.

учитель химии

«Пользу воды мы понимаем, когда колодец пересыхает», - так сказал около двух с половиной столетий назад великий ученыйестествоиспытатель и политик, один из отцов-основателей США Бенджамин Франклин. Он произнес эти слова в те времена, когда люди нашей Земли имели в достатке чистую питьевую воду.

Цель работы:

химическое исследование питьевой воды.

Задачи:

- посещение лаборатории МУП «ВКХ»;
- знакомство с различными методами анализа питьевой воды, фотоэлектрическим колориметром КФК -2;
- определение массовой концентрации ионов аммония, катионов железа, анионов хлора в питьевой воде.

Основные компоненты минерального состава воды. Компонент минерального состава воды Предельнодопустимая концентрация (ПДК) Группа 1 1.Катионы: Кальций (Са2+) 200 мг/л Натрий (Na+) 200 мг/л Магний (Mg 2+) 100 мг/л 2.Анионы: Гидрокарбонат (НСО3 -) 1000 мг/л Сульфат (SO42-) 500 мг/л Хлорид (CI -) 350 мг/л Карбонат (СО32 100 мг/л

```
Группа 2
1.Катионы:
      Аммоний (NH 4+)
                                           2,5 мг/л
                                           0,001
      Тяжелые металлы (сумма)
ммоль/л
      Железо общее (Fe2+ + Fe 3+)
                                              0,3 мг/л
2. Анионы:
      Нитрат (NO3-)
                                           45 мг/л
      Ортофосфат (РО 43-)
                                            3,5 мг/л
      Нитрит (NO2-)
                                           0,1 мг/л
Концентрации растворенных в воде минеральных солей
определяют, как правило, химическими методами:
титриметрическим, колориметрическим и др.
```

Хлориды

В питьевой воде города Гусева концентрация хлоридов составляет 20 – 120 мг/л, в зависимости от того, какие скважины работают.

Метод аргентометрического титрования. Титрование можно выполнять в пределах pH 5,0-8,0.

Массовую концентрацию хлорид-аниона (С) в мг/л вычисляют по уравнению:

Vв

где: Vxл - объём раствора нитрата серебра, израсходованное на титрование, мл;

H – концентрация титрованного раствора нитрата серебра с учетом поправочного коэффициента, г-экв/л;

Vв - объем воды, взятой для анализа, мл;

35,5 – эквивалентная масса хлора;

1000 – коэффициент пересчета единиц измерения из г/л в мг/л.

Катионы аммония

- Метод определения массовой концентрации катиона аммония основан на его реакции с реактивом Несслера образовывать соединения, окрашенные в щелочной среде в желтый цвет.
 - 2K2HgJ4 + NH3 + 3KOH = Hg2OJNH2 + 7KJ + 2H2 О желтый
- Мешающее влияние железа устраняют добавлением к пробе сегнетовой соли: KCOO(CHOH)COONa.
- Концентрацию катионов аммония определяют колориметрическим методом с помощью фотоколориметра КФК.
- Оптическая плотность окрашенных растворов пропорциональна концентрации катионов аммония.


Катионы железа

- Метод определения железа основан на способности катиона железа(11) в интервале рН 3-9 образовывать с ортофенантролином комплексное оранжево-красное соединение.
- При наличии в воде железа (111), оно восстанавливается до железа (11) солянокислым гидроксиламином в нейтральной или слабокислой среде по реакции:
 - $Fe3+ + 2NH2OH \times HCI = Fe2+ + N2 + 2H2O + 2HCI + 2H+$
- Таким образом определяется суммарное содержание железа (11) и железа (111). Анализ проводится в ацетатном буферном растворе при рН 4,5-4,7.
- Концентрацию железа в анализируемой воде определяют с помощью КФК(фотоэлектрический колориметр).

Фотоэлектрический колориметр

ONTINYECKAR CXEMA KOK-2

CBETOBOFO

ПУЧКА

POTO > NEMEHT

Практическая часть РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ АММОНИЯ В ПИТЬЕВОЙ ВОДЕ.

Для анализа берем две пробы питьевой воды из водопроводного крана: одна объемом 25 мл, а другая объемом 5 мл, разбавленная до 25 мл дистиллированной водой. Добавляем реактивы в соответствии с прописью методики. Получаем окрашенные в желтый цвет растворы, интенсивность окраски которых различна (первая проба более ярко окрашена, чем другая).

С помощью фотоэлектрического колориметра (КФК) измеряем оптическую плотность окрашенных растворов (Д). Данные измерения заносим в таблицу. По формуле зависимости массовой концентрации ионов аммония (Х мг/л) от оптической плотности (Д)

Х= 11,081 Д

находим значение массовой концентрации ионов аммония в исследуемых пробах питьевой воды и данные заносим в таблицу:

№№ п/п	V, мл	Д (оптическая плотность)	Х (концентрация) мг/л
1.	25	0,18	1,99
2.	5	0,04	0,44

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ МАССОВОЙ КОНЦЕНТРАЦИИ ЖЕЛЕЗА ОБЩЕГО В ПИТЬЕВОЙ ВОДЕ.

Для анализа взяты две пробы питьевой воды из крана: одна объемом 25 мл и другая объемом 5 мл, доведенная до объема 25 мл дистиллированной водой (разбавленная проба).

После добавления реактивов в каждую пробу в соответствии с прописью методики, получили окрашенные растворы, с различной интенсивностью окраски. С помощью фотоэлектрического колориметра (КФК-2) измерили оптическую плотность (Д) окрашенных растворов. Получили данные, которые занесли в таблицу. По формуле расчета зависимости концентрации ионов (X) мг/л в растворе от оптической плотности раствора:

X = 8,324 Д

рассчитали концентрацию ионов железа общего в каждом растворе. Результаты расчета также занесли в таблицу:

№№ п/п	V, мл	Д(оптич. плотность)	Х(концентрация) мг/л
1.	25	0,60	4,99
2.	5	0,12	0,99

РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ *ХЛОРИДОВ* В ПИТЬЕВОЙ ВОДЕ

Взята проба питьевой воды из водопроводного крана объемом 25 мл. Добавили реактив в соответствии с прописью методики. Получили раствор желтого цвета. Оттитровали его раствором азотнокислого серебра до перехода окраски из желтой в оранжевую. На титрование 25 мл питьевой воды пошло 1,1 мл раствора нитрата серебра. Подставляем это значение в формулу для расчета массового содержания хлоридов. Получили содержание хлоридов в питьевой воде 78,1 мг/л.

Определение химического состава питьевой воды

Измер. значение

5,5-6,7

0,1-0,3

60-80

1,3-1,7

0,003

0,005

0,4

600-700

	HOK	
рН	6-9	7,2-7,8
Окисляемость перманганатная	5 мгО/л	2,5-3,6

 $n \partial v$

7 м^юль/л

1000 м г/л

 $350 \, \text{мг/л}$

 $2 \text{ M}\Gamma/\Pi$

 $3 \text{ M}\Gamma/\pi$

 $45 \, \text{мг/л}$

 $0,1 \text{ M}\Gamma/\pi$

 $0,3 \text{ M}\Gamma/\pi$

Показатель

Жесткость общая

Железо об идее

Сухой остаток

Хлориды

Аммоний

Нитриты

Нитраты

Нефтепродукты

Заключение.

Во всех пробах питьевой воды из водопроводных кранов, взятых для анализа, массовая концентрация ионов аммония, катионов железа, анионов хлора.соответствует гигиеническим требованиям, утвержденным нормативными документами (СаН ПиН и ГОСТР).

Водоснабжение города Гусева.

Водоснабжение г. Гусева осуществляется из подземных источников. Водозабор расположен на юго-востоке от города и состоит из трех участков с восемью скважинами.

Глубина скважин от 50 до 90 метров. Эксплуатируются воды днепровско - московских водно-ледниковых отложений. Вода пресная, слабо щелочная, средней минерализации с высоким содержанием железа.

Далее вода направляется на фильтры обезжелезивания, предварительно пройдя обработку активным хлором для обеззараживания. После фильтров концентрация железа в воде снижается с 4-5 мг/л до 0,1- 0,2 mi 7л.

Очищенная от железа вода собирается во второй накопительной емкости объемом 2000 куб.метров и насосами подается в разводящую сеть. Нерастворимый осадок окислов железа удаляется из фильтров обратной промывкой водой и сбрасывается в отстойники.

Для поддержания давления в городской сети служит подкачивающая станция, расположенная по ул. Балтийской, имеющая 4 накопительные емкости по 100 куб. метров каждая.

Протяженность распределительной сети городского водопровода составляет 86,4 км.

Водопотребление составляет примерно 10 тысяч куб. метров в сутки.

Спасибо за внимание!