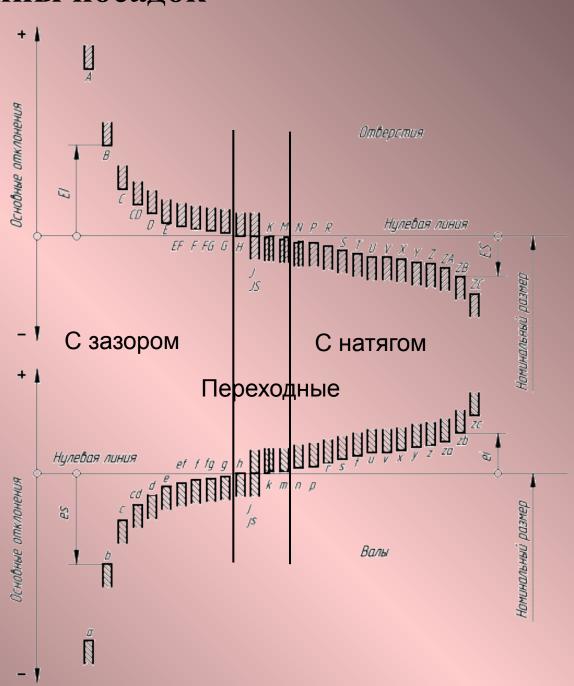
Посадки и их характеристики. Основные положения ЕСДП

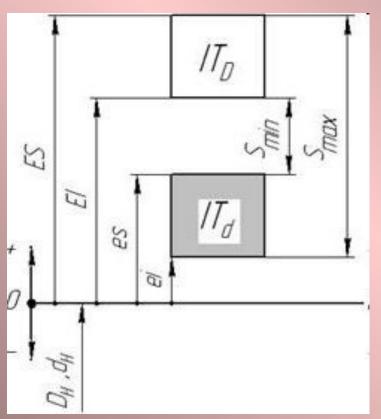
Типы соединений

Две или несколько подвижно или неподвижно соединяемых деталей называют **сопрягаемыми**.

Поверхности, по которым происходит соединение деталей, называют **сопрягаемыми**.

Остальные поверхности называют несопрягаемыми (свободными).

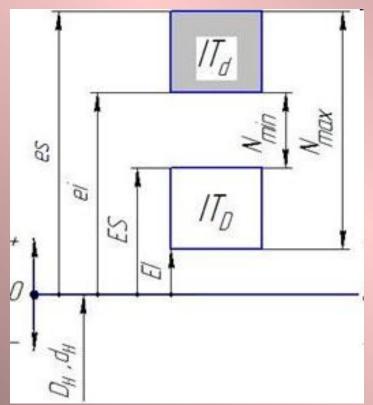

В соответствии с этим различают размеры сопрягаемых и несопрягаемых (свободных) поверхностей.


В соединении деталей, входящих одна в другую, есть охватывающие и охватываемые поверхности.

Посадкой называют характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов. Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению.

Типы посадок

- посадки с зазором;
- посадки с натягом;
- переходные посадки.


Посадка с зазором – посадка, при которой всегда образуется зазор в соединении, т.е. наименьший предельный размер отверстия больше наибольшего предельного размера вала.

Smin=Dmin-dmax=EI-es — минимальный зазор. Smax=Dmax-dmin=ES-ei — максимальный зазор. Sc=(Smax+Smin)/2 — средний зазор. Ts=Smax-Smin — допуск зазора.

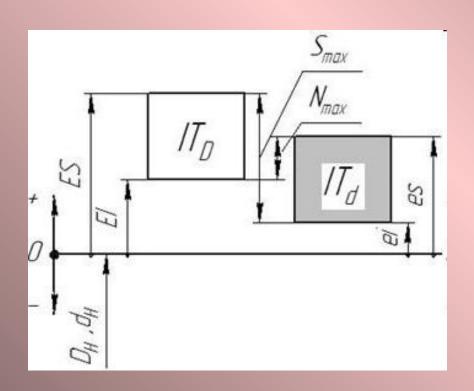
Наибольший зазор (Smax) — это разность между наибольшим предельным размером отверстия и наименьшим предельным размером вала

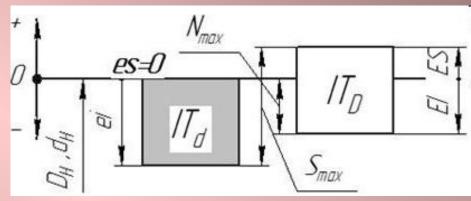
Наименьший зазор (Smin) — это разность между наименьшим предельным размером отверстия и наибольшим предельным размером вала

Cредний зазор (Sm) — это среднее арифметическое наименьшего и наибольшего зазоров

Посадка с натягом — посадка, при которой всегда образуется натяг в соединении, т.е. наибольший предельный размер отверстия меньше наименьшего предельного размера вала. При графическом изображении поле допуска отверстия расположено под полем допуска вала

Nmax=dmax - Dmin=es - EI — максимальный натяг. Nmin=dmin - Dmax=ei - ES — минимальный зазор. Nc=(Nmax + Nmin)/2 — средний натяг. TN= Nmax - Nmin — допуск натяга

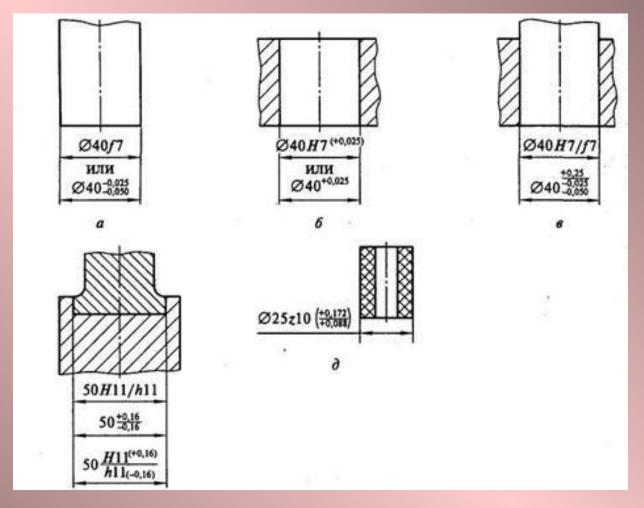

Hamse(N) — это отрицательная разность размеров отверстия и вала до сборки Hauбольший намяг (Nmax) — это разность между наименьшим предельным размером отверстия и наибольшим предельным размером вала.


Наименьший натяг (Nmin) — это разность между наибольшим предельным размером отверстия и наименьшим предельным размером вала

Средний натяг (*Nm*) – среднее арифметическое наибольшего и наименьшего натягов

Допуск посадки с натягом (ITN) — разность между наибольшим и наименьшим натягами (сумма допусков отверстия и вала, составляющих соединение)

Переходная посадка — посадка, при которой возможно получение как зазора, так и натяга в зависимости от действительных размеров отверстия и вала. Для переходной посадки характерно частичное перекрытие полей допусков отверстия и вала при их графическом изображении



Nmax=es - EI – максимальный натяг.

Smax=ES - еі – максимальный зазор.

TN=TS= Nmax - Nmin= Smax - Smin – допуск посадки.

Обозначение посадок на чертежах

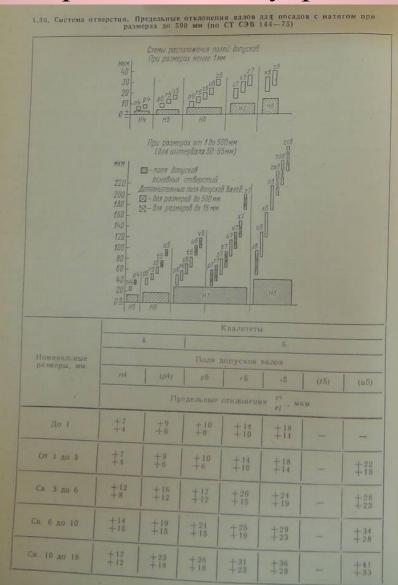
Посадку обозначают дробью, в числителе которой указывают обозначение поля допуска отверстия, а в знаменателе — обозначение поля допуска вала.

Например: Ø40H7/g6

Принципы выбора допусков и посадок

- 1. Метод прецедентов (метод аналогов) заключается в том, что конструктор отыскивает в однотипных или других машинах, ранее сконструированных и находящихся в эксплуатации, случаи применения составной части (узла), подобной проектируемой, и определяет допуск и посадку.
- 2. Метод подобия является по существу развитием метода прецедентов. Он возник в результате классификации деталей машин по конструктивным и эксплуатационным признакам и выпуска справочников с примерами применения посадок. Для выбора допусков и посадок по этому методу нужно установить аналогию конструктивных признаков и условий эксплуатации проектируемой составной части (узла) с признаками, указанными в справочниках.
- 3. Расчетный метод является наиболее обоснованным методом выбора допусков и посадок. Квалитеты (классы, степени точности), допуски и посадки при проектировании машин и других изделий нужно выбирать так, чтобы добиться удовлетворения эксплуатационно-конструктивных требований, предъявляемых к детали, составной части (узлу) и машине в целом. Для повышения надежности, долговечности и точности машины иногда появляется необходимость максимального приближения размеров деталей к расчетным.

Самостоятельная работа


Построить схему расположения полей допусков, определить вид посадки, рассчитать зазоры (натяги)

```
Smin=Dmin-dmax=EI-es — минимальный зазор. Smax=Dmax-dmin=ES-ei — максимальный зазор. Sc=(Smax+Smin)/2 — средний зазор. Ts=Smax-Smin — допуск зазора.
```

Основные положения ЕСДП СЭВ

Системой допусков и посадок называют совокупность рядов допусков и посадок, закономерно построенных на основе опыта, теоретических и экспериментальных исследований и оформленных в виде стандарта.

Разбиение номинальных размеров на диапазоны и интервалы с целью упрощения таблиц допусков и посадок

					Продо	лжение т	габл. 1.30				
	Квалитеты 4										
Номинальные	Поля допусков валов										
размеры, мм	n4	(p4)				- 1 1					
	Предельные отклонения es мкм										
Св. 18 до 24	+21 +15	+28 +22	+31 +22	+37 +28	+44 +35	-	+50 +41				
Св. 24 до 30	‡21 ‡15	+28 +22	+31 +22	+37 +28	+44 +35	+50 +41	+57 +48				
Св. 30 до 40	+24 +17	+33 +26	+37 +26	+45 +34	+54 +43	+59 +48	+71 +60				
Св. 40 до 50	+24 +17	+33 +26	+37 +26	+45 +34	+54 +43	+65 +54	1 1 1 1 1				
Св. 50 до 65	+28 +20	+40 +32	+45 +32	+54	+66 +53	+79 +66	1100				
Св. 65 до 80	+28 +20	+40 +32	+45 +32	+56 +43	+72 +59	+88 +75	‡115 ‡102				
Св. 80 до 100	+33 +23	+47 +37	‡52 ‡37	+66 +51	+86 +71	+10	139				
Св. 100 до 120	+33 +23	+47 +37	+52 +37	+69 +54	+94 +79	+11	19 +159				
Св. 120 до 140	+39 +27	+55 +43	+61 +43	+81 +63	+110 +92	+ 14 + 12	0 +188				
Св 140 до 160	+39 +27	+55 +43	+61 +43	+83 +65	+118	+15	2 +208				
Св. 160 до 180	+39 +27	+55 +43	+61 +43	+86 +68	+126 +108	+ 164	+228				
Св. 180 до 200	+45 +31	‡64 ‡50	‡ ₅₀	‡ 97	‡142 ‡122	±186	+286 +286				
Св 200 до 225	+45 +31	+64 +50	+70 +50	‡100. ‡80	+ 150 + 130	‡200 ‡180	+278 +258				
Св. 225 до 250	+45 +31	+64 +50	+70 +50	+104 +84	‡160 ‡140	+216 +196	+304 +284				

Градация точности (ряды точности)

Квалитет (степень точности) — совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров.

IT=ai, величина допуска 5-17 квалитета

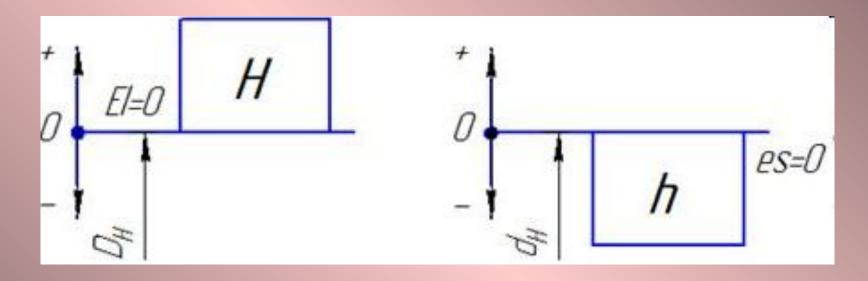
IT01, IT0, IT1..., IT17, IT18

Число единиц допуска в 5 – 17 квалитетов (для размеров до 500мм)

														т.
Квалитет	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Число единиц допуска \boldsymbol{k}	7	10	16	25	40	64	100	160	250	400	640	1000	1600	2500

Допуск для размеров до 500 мм

 $IT = k \cdot i$, $cde \ i = 0.45 \cdot \sqrt[3]{D} + 0.001 \cdot D$, mkm

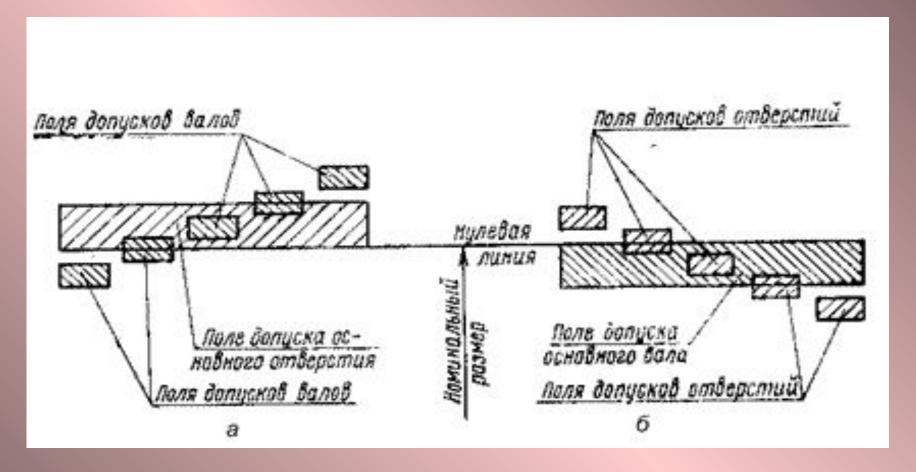

Допуск для размеров свыше 500 до 3150 мм

 $IT = k \cdot I$, $ede I = 0,004 \cdot D + 2,1$ mkm

Примечания.

1. D — среднее геометрическое из крайних значений каждого интервала номинальных размеров, мм.

Использование предельно одностороннее расположение полей допусков основных деталей.


Основный вал — вал, верхнее отклонение которого равно нулю, т.е. es = 0.

Основное отверстие — отверстие, нижнее отклонение которого равно нулю, т.е. EI = 0.

Расположение полей допусков

Посадки в системе отверстия и вала

Посадки в системе отверстия - это посадки, в которых различные зазоры и натяги получаются соединением различных валов с основным отверстием.

Посадки в системе вала - это посадки, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом.

Температурный режим

Нормальная температура, при которой определены допуски и отклонения, устанавливаемые стандартами, принята равной + 20 °C (ГОСТ 9249-59). Такая температура близка к температуре рабочих помещений производственных помещений. Градуировку и аттестацию всех линейных и угловых мер и измерительных приборов, а также точные измерения следует выполнять при нормальной температуре, отступления от нее не должны превышать допускаемых значений, содержащихся в ГОСТ 8.050-73 (Государственная система измерений).