
ВОДНЫЙ ОБМЕН РАСТЕНИЙ

- 1. Поступление воды
- 2. Транспорт воды
- 3. Расходование воды

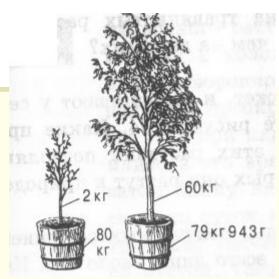
Водный баланс

Водный баланс - соотношение между поглощением (П) и расходованием воды (Р).

$$\Pi = P$$

$$\Pi > P$$

История исследований



Ян Батист ван Гельмонт

(1579-1644). Поставил первый физиологический эксперимент, связанный с изучением питания растений.

Опыт Гельмонта с ивовой веткой; вес земли до посадки ивы (1) и спустя пять лет после посадки (2) почти не изменился.

Растение за 5 лет увеличилось в весе на 164 фунта 3 унции, а земля за 5 лет потеряла в весе всего лишь 2 унции.

Вывод, что пищей растению служит вода.

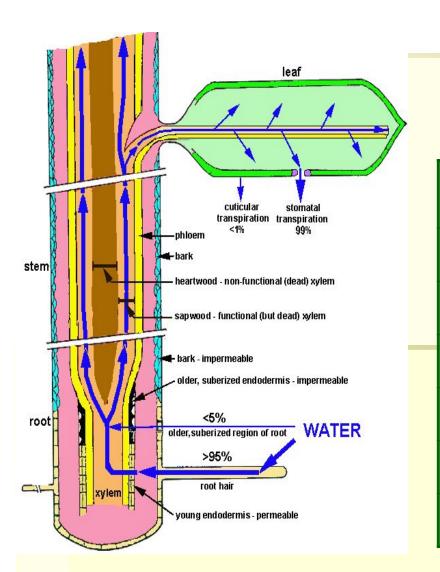
В 1889 г., через 245 лет после смерти Гельмонта, ему поставили памятник с надписью: «За полезные для науки заблуждения».

Расходование воды растени

Растения выделяют воду в жидком и парообразном состоянии.

Процесс испарения воды надземными органами растений – **транспирация**

Процесс выделения воды в капельно-жидком состоянии – **гуттация**



Транспирация

- 1) Понятие транспирации, значение.
- 2) Строение листа как органа транспирации.
- 3) Виды транспирации.
- 4) Регуляция транспирации.
- 5) <u>Влияние факторов на устьица.</u>
 <u>Суточный ход устьичных движений.</u>
- 6) <u>Величины, определяющие</u> <u>транспирацию</u>.
- 7) Влияние условий на транспирацию.

Транспирация

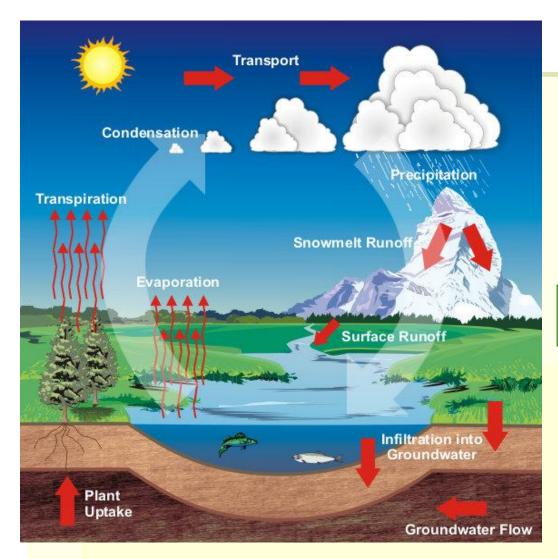
«Растение – прежде всего и главным образом – прибор для улавливания воздуха и солнечного света, а такой прибор, представляя большую поверхность нагрева, роковым образом становится прибором для испарения воды» К. А. Тимирязев

РастениеГодичное испарение, л1 раст. кукурузы180-2001 раст. картофеля951 раст. томатов1251 гектар злаков1,5-5 млн1 га елового леса3,2 – 3,9 млн

1 га соснового леса

1,6 - 2,7 млн.

К. А. Тимирязев назвал транспирацию, в том объеме, в каком она идет, "необходимым физиологическим злом"


P	астение	Площадь поверхности листа, см²	Общая площадь поверхности листьев растения, см ²
Куку	руза	600-1320	7900
Огур	ец	29-33	180-1100
Подо	олнечник	38	2260
Пшеі	ница	13-15	46-65
Ябло	ня	18	318 000

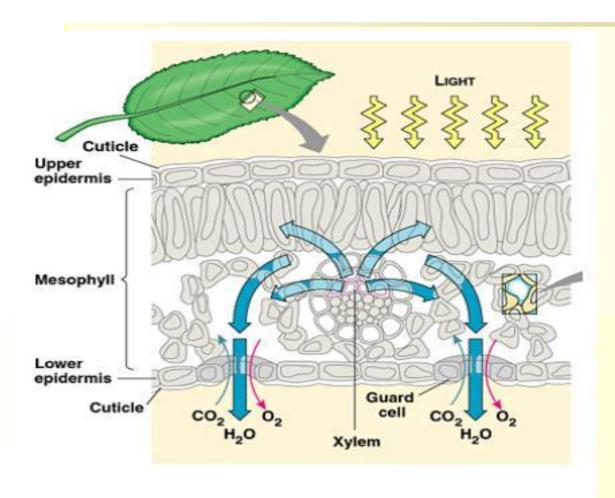
Значение транспирации

- 1) **Терморегуляция**. Температура сильно транспирирующего листа может примерно на 7° С быть ниже температуры листа завядающего, нетранспирирующего.
- 2) Транспирация верхний двигатель водного тока, создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.
- 3) С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества.

Транспирация – уникальное явление в биологии с точки зрения количеств движения.

За год через высшие растения планеты протекает 35 ×10¹² т. В течение суток вода в растении обновляется 20-30 раз

Транспирации

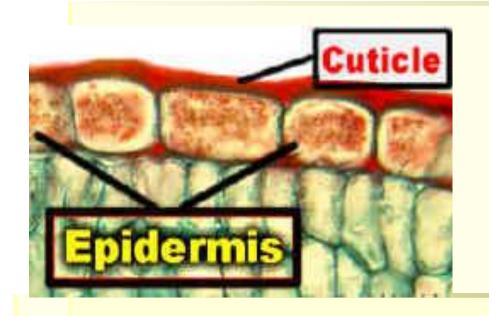


Иванов А.А. Понтийские болота. вторая половина 1830х

Показатели транспирации

Показатель	Определение	Значение
Интенсивность транспирации (скорость)	количество воды, испаряемой растением (в г) за единицу времени (ч) единицей поверхности листа (в дм ²).	0,15— 1,47 г/дм ² ч
Транспирационный коэффициент	количество воды (в г), испаряемой растением при накоплении 1 г сухого вещества	100-1000 г Н ₂ О/г сухого вещества
Продуктивность транспирации	количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды величина, обратная транспирационному коэффициенту	1-8 г сухого вещества /гН ₂ О

Строение листа как органа транспирации



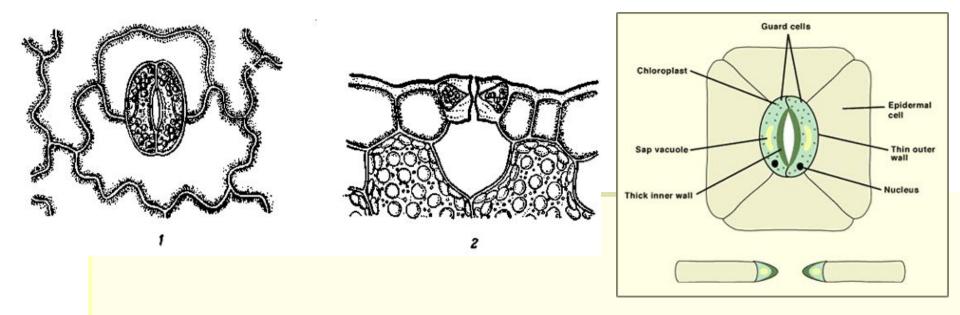
Средняя толщина листа составляет 100—200 мкм

Структуры, участвующие в испарении:

кутикула устьица

Кутикула


Более развитая кутикула у листьев светолюбивых растений по сравнению с теневыносливыми, засухоустойчивых по сравнению с влаголюбивыми.

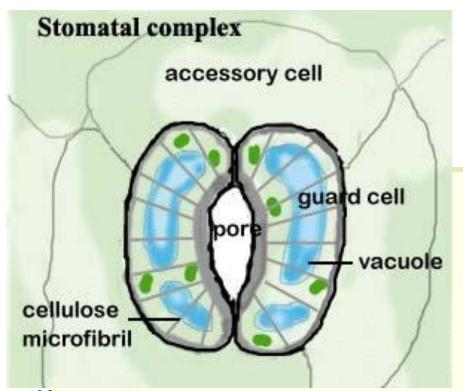

Кутикула имеет трехслойную структуру.

Поверхность кутикулы покрыта тонким слоем воска.

Средний слой, называемый истинным кутином, состоит из кутина, погруженного в воск.

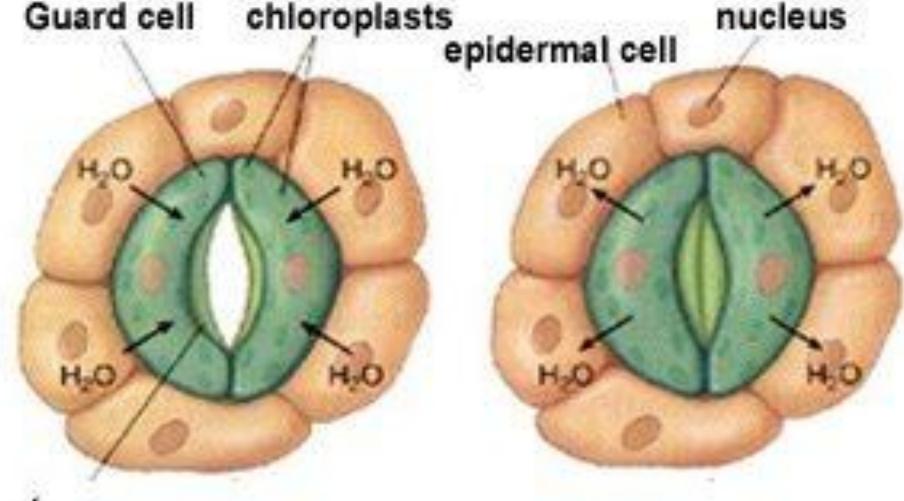
Нижний слой (кутикулярный) включает кутин, воска и углеводороды, которые смешиваются с элементам клеточной стенки.

Устьица - отверстия (щели) в эпидермисе, образованные специализированными эпидермальными клетками, которые называют замыкающими


Количество устьиц зависит от возраста листа и условий среды и составляет 10 - 600 на 1 мм 2 листа (от 50 до 500 на 1 мм 2).

Растение	Количество устьиц на листьях		
	Нижняя сторона	Верхняя сторона	
Горох	200	100	
Ива	134	78	
Капуста	230	140	
Кувшинка	-	490	
Кислица	35	-	
Лилия	330	-	
Люцерна	140	170	
Яблоня	290	-	
Сирень	330		

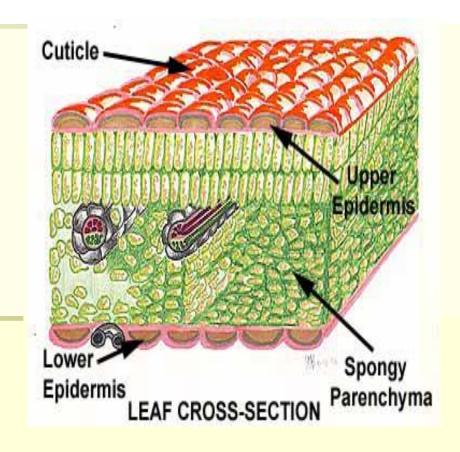
Длина устьичной щели


Дуб	5	Кукуруза	19
Кипрей	9	Подсолнечник	22
Земляника	10	Кактус (цереус)	26
Гречиха	12	Калужница	28
Кислица	13	Примула	30
Сныть	15	Пшеница	38

Длина устьичных щелей 20—30 мкм, ширина 4-6 мкм

Особенности замыкающих клеток устьиц

- Клеточные стенки неравномерно утолщены.
- Имеются хлоропласты в отличие от клеток эпидермиса.
- Микрофибриллы целлюлозы в КС радиально ориентированны, поэтому выполняют роль направляющих при движениях устьиц.
- Сложная вакуолярная система, крупное ядро, много митохондрий.
- Движение двух замыкающих клеток синхронно, поскольку их цитоплазма связана плазмодесмами.


stoma

Water diffuses into guard cells which causes them to open. On hot/dry days, the guard cells have less water, they relax and the stoma close

Виды транспирации

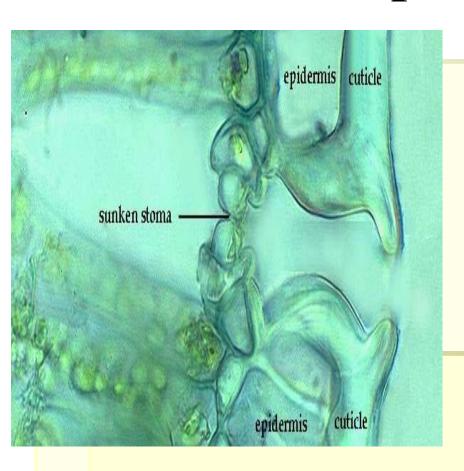
Возможны три пути испарения:

- через устьица устьичная,
- через кутикулу кутикулярная
- через чечевички лентикулярная

Кутикулярная транспирация

Составляет 10% от общей потери воды листом, а у растений со слабым развитием кутикулы - до 30%.

У молодых листьев с тонкой кутикулой - 50%,


у з<mark>р</mark>елых листьев с мощной кутикулой — 10% от всей транспирации,

в стареющих листьях возрастает.

Кутикулярная транспирация зависит *от оводненности листа*.

При насыщении кутикулы водой идет интенсивнее, при подсыхании кутикулы – снижается.

Устьичная транспирация

Составляет 80—90% от всего испарения листа.

Этапы транспирации:

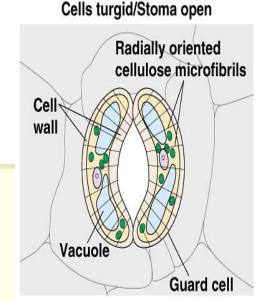
- Первый этап переход воды из клеточных оболочек в межклетники
- Второй этап выход паров воды из межклетников через устьичные щели.
- **Третий этал** диффузия паров воды от поверхности листа в более далекие слои атмосферы.

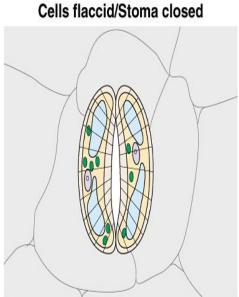
Относительная транспирация (OT) - отношение испарения листом к испарению со свободной поверхности той же площади, что и лист.

ОТ ≈ 1, что объясняется явлением краевой диффузии: испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади.

Большая скорость диффузии водяного пара через устьица объясняется законом Й.Стефана: испарение с малых поверхностей (площадь устьичной щели) идет пропорционально не их площади (πr^2) , а периметру $(2\pi r)$.

При открытых устьицах общая поверхность устьичных щелей составляет 1—2% от площади листа.


Диаметр пор, мм <i>(d)</i>	Площадь пор, отн.ед. (πr²)	Периметр, отн. ед. (2 тr)	Испарение воды, отн.ед.
2,64	100	100	100
0,35	1	13	14


Регуляция **1-**го этапа транспирации (внеустьичная регуляция)

- 1) уменьшение оводненности КС, с поверхности которых идет испарение механизм начинающегося подсыхания.
- Подсыхание КС хлоренхимы → изменение формы менисков в капиллярах (вогнуты) → увеличение поверхностного натяжения → затруднение перехода воды в парообразное состояние → снижение испарения.
- 2) изменение водного равновесия между всеми частями клетки.
- Снижение воды в клетке → увеличение концентрации клеточного сока → уменьшение содержания свободной воды в цитоплазме и КС. Соотношение свободной воды к связанной падает, растет водоудерживающая сила, интенсивность испарения уменьшается.

Внеустьичный способ регулирования транспирации позволяет снижать расход воды без ущерба для ассимиляции CO₂.

Регуляция 2-го этапа транспирации (устьичная регуляция)

Связана с движениями устьиц.

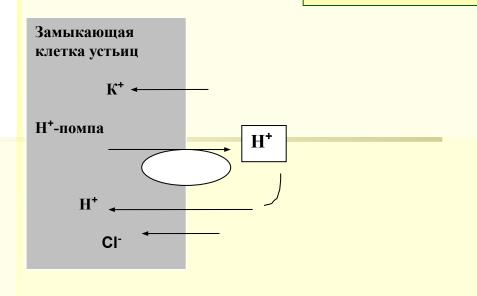
Три типа движений устьиц:

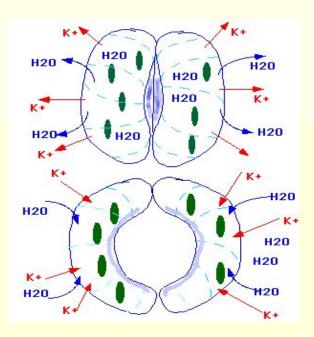
- 1. Гидропассивные движения устьиц, вызванные окружающими паренхимными клетками. Ответы в ложном направлении.
- 2. Гидроактивные реакции это движения, вызванные изменением в содержании воды в замыкающих клетках устьиц.
- 3. Фотоактивная реакция открывание устьиц на свету и закрывание в темноте.

«Сахарная гипотеза»

```
Свет → фотосинтез в ЗКУ →
снижение концентрации СО, в ЗКУ →
повышение рН →
ИЗМЕНЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ (крахмальная фосфорилаза)
\rightarrow распад крахмала \rightarrow
увеличение концентрации →
снижение Чосм. →
снижение \Psi B \rightarrow
поступление воды в ЗКУ из окружающих клеток →
```

Крахмал +Фн ↔ глюкозо-1-фосфат

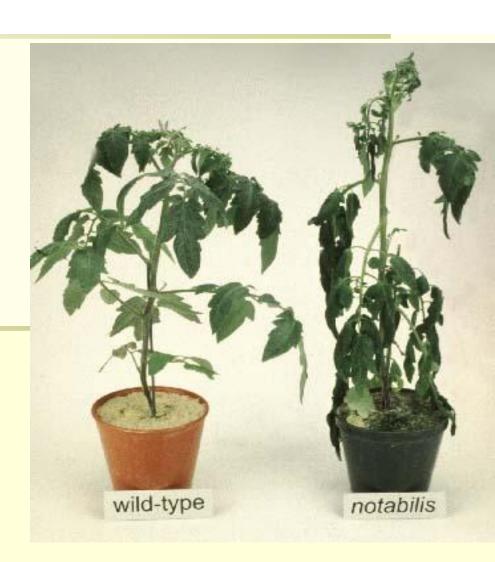

устьица открываются


Осмотический механизм

Свет \to активизация H⁺-помпы плазмалеммы \to выход H⁺ из 3КУ \to транспорт K⁺ \to транспорт CI⁻ \to

увеличение концентрации \to снижение $\Psi_{\text{осм.}}$ \to снижение $\Psi_{\text{в}}$ \to поступление воды в ЗКУ \to устьица открываются.

При открытых устьицах **Чосм. = -4,0 МПа**, при закрывании **Чосм.** Увеличивается на 0,3-1,8 МПа


Роль фитогормонов

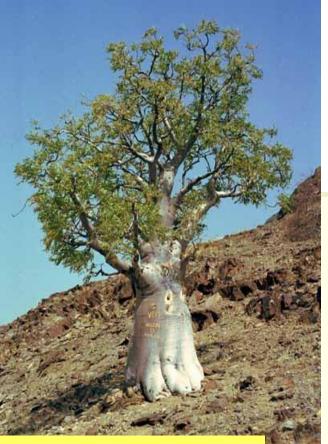
АБК стимулирует закрывание устьиц:

- тормозит образование
 ферментов распада крахмала.
 - содержание АТФ снижается
- уменьшает поступление К⁺ (торможение H⁺ помпы).

Цитокинины регулируют открывание устьиц:

- усиливается транспорт К⁺ в ЗКУ
- активизация H⁺ АТФазы плазмалеммы

Влияние факторов на ус<mark>тьица</mark>



Закрывание устьиц	Открывание устьиц
Малая интенсивность света	Высокая влажность почвы
Недостаток воды	Избыток калия
Высокая и низкая температура	Цитокинины
Увеличение концентрации CO ₂	
Абсцизовая кислота	

Растения – накопители воды

 Некоторые растения. — обитатели засушливых районов — успешно переносят жаркое время года, запасая воду в особых тканях и органах.

Moringa ovalifolia – дерево-фляга Дерево-фляга, или моринга, произрастает в горах Юго-Западной Африки.

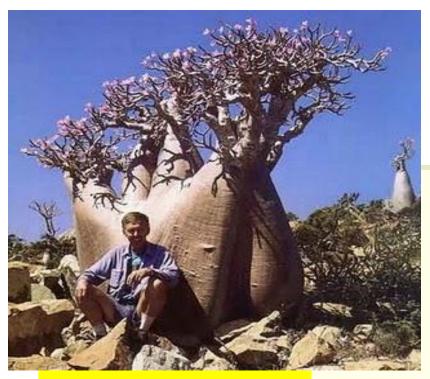
Растение впервые описано немецким ботаником Динтером в 1914 г.

Высота дерева 2-6 м, толщина ствола достигает в диаметре одного метра. Благодаря этому дерево накапливает большое количество воды.

Древесина мягкая и сочная.

Растения острова Сокотра

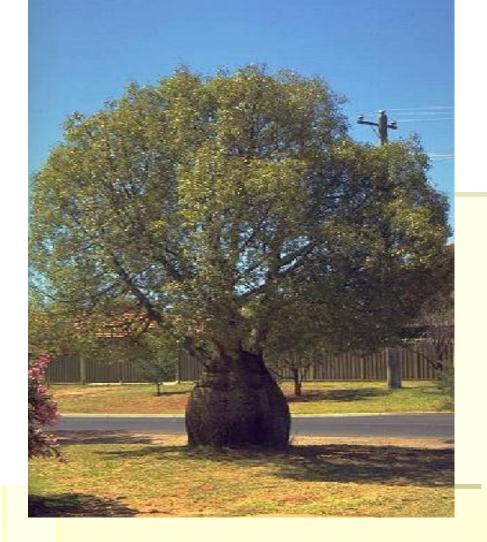
Dendrosicyos socotrana – огуречное дерево


Огур<mark>ечное дерево, сем.</mark> Тыквенные.

Ство<mark>л, покрытый светло-серой корой, имеет конусовидную форму.</mark>

Служ<mark>ит резервуаром, запасающим воду на засушливый сезон.</mark>

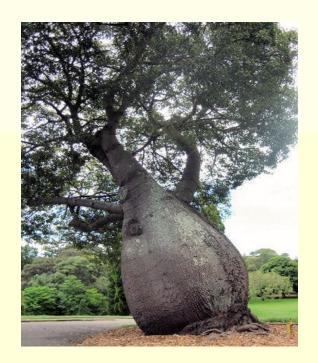
Dorstenia gigas



Adenium socotranum

Adenium obesum – адениум тучный

Адениум тучный произрастает в Кении. У него клубнеподобный ствол, от верхней части которого отходят короткие, но довольно толстые ветки. На ветвях располагаются сочные листья и красные цветки.



Brachychiton rupestris – бутылочное дерево

«Бутылочное дерево»

«Квинслендское бутылочное дерево», или брахихитон наскальный.

Сем. Стеркулиевые. Обитатель безводных областей Центральной Австралии. Родственник шоколадного дерева. Достигает высоты 15 м при диаметре ствола 1,8 м.

Jatropha podagrica

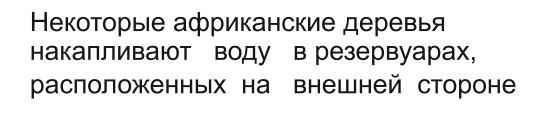
«Панамское бутылочное дерево» - Cavanillesia platanifolia

Сем. Бомбаксовые.

Функцию древесины выполняет толстая и очень крепкая, гладкая кора серого цвета.

Ятрофа - «бутылочное дерево» семейства Молочайные.
Произрастает в тропической

Произрастает в тропической Америке.


Ravenala madagascariensis

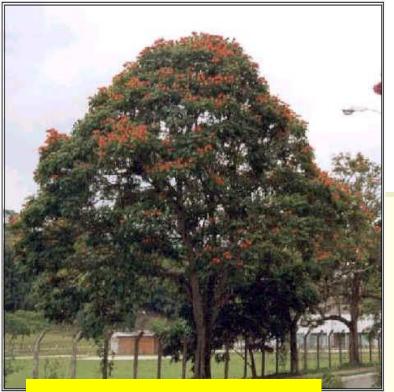
Равенала мадагаскарская или дерево путешественников

Ricinodendron rautanenii

У рицинодендрона красивого («орех Манкетти», «замбезийский миндаль»), произрастающего в Зимбабве, дождевая вода собирается в углублениях ствола.

У старых экземпляров босции часто образуется дупло, которое служит

естественным сосудом для воды.


Musanga

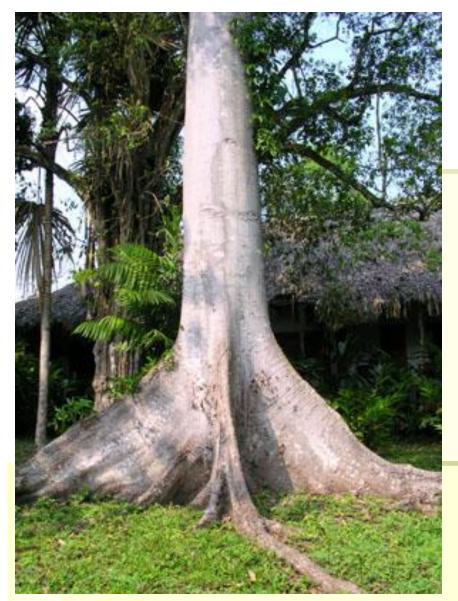
Мусанга – растение сем. Цекропиевые.

«Пробочное» или «зонтичное» дерево.

Растет и быстро и широко распространено на вырубках, на почвах, богатых перегноем.

Молодые ветки содержат пригодную для питья воду, что используется охотниками.

Spathodea campanulata



Африканское дерево спатодея колокольчатая.

Сем. Бигнониевые.

В некоторых местах называют «дерево-источник», т.к. вода буквально переполняет его цветочные почки.

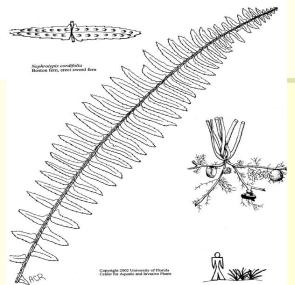
Мексиканское дерево сейба мелколистная. Сем. Бомбаксовые.

Произрастает в местности, где краткий сезон дождей сменяется длительной засухой, корни не достигают глубокозалегающих грунтовых вод.

Наличие подземных резервуаров для воды на корнях. В начале засушливого сезона шаровидные утолщения корней содержат значительное количество воды, но к концу запасы ее почти истощаются. Такие корневые вместилища влаги могут функционировать много лет.

Комнатное растение хлорофитум. Корни белые, очень сочные, иногда похожие на удлиненные корни редьки. В них содержится большое количество воды. Родина растения — мыс Доброй Надежды. Там оно произрастает как эпифит на коре деревьев. В период засухи, когда и в воздухе, и в коре дерева-хозяина мало влаги, хлорофитум переходит на

накопленных в корнях.


Хлорофитум

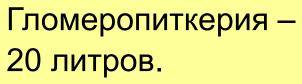
Растения - эпифиты

У некоторых эпифитных папоротников в период дождей на коротких боковых разветвлениях корневищ развиваются особые, покрытые сухими тонкими серебристыми чешуйками клубни, ткань которых переполнена водой. Старые экземпляры нефролеписа в условиях теплицы могут образовывать свыше 200 клубней в год. Наиболее крупные достигают в длину 2—2,5 метра.

У других эпифитов роль внутренних резервуаров выполняют особые утолщения стебля, ложнолуковицы и толстые листья

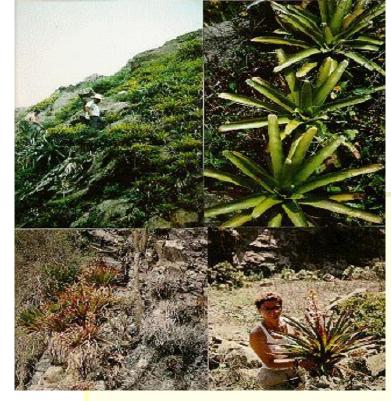
Примером наружных резервуаров служат мешковидные листья дисхидии Раффлеза из сем. Ластовневые.

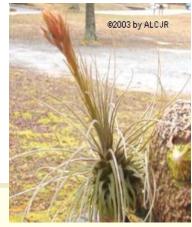
Бромелиевые —сем. однодольных растений. Насчитывает не менее 2100 видов. Места произрастания: на песках, на голых скалах, стволы и ветви растений. У части бромелиевых корни не контактируют с почвой и заканчиваются в пазухах листьев

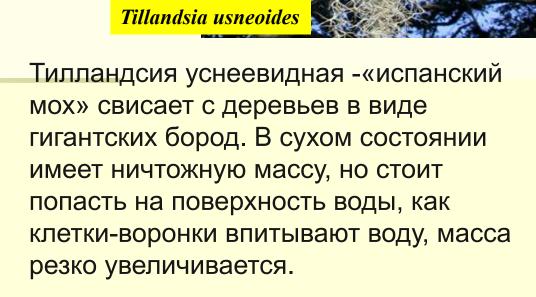


Каким образом бромелиевые снабжаются водой?

У многих растений листовые влагалища образуют сосуды в форме вазы или чаши, где во время дождя собирается влага. Из этих емкостей вода вместе с питательными веществами поглощается придаточными корнями, вырастающими в основании листьев.


У фризеи гигантской они вмещают более 5 литров воды.




Аесhmea chantinii — эхмея
Светлые полые поперечные полоски образованы мелкими круглыми пластинками, диаметром 4 мм.
Пластинки имеют форму воронки и каждая представляет собой пустотелую клетку, которая в сухую погоду сжимается, а при увлажнении набухает и распрямляются.

Tillandsia purpurea

Растения рода тилландсия растут на деревьях, скалах, сухом песке. Корневая система автрофирована, иногда отсутствует. Растение живут за счет влаги туманов

У ворсянки лесной и ворсянки посевной, принадлежащих к сем. Ворсянковые, супротивно расположенные листья основаниями своих черешков обхватывают стебель таким образом, что образуется небольшая чаша, Обычно в ней скапливается дождевая вода, запасы которой пополняются за счет росы. Один из видов ворсянки, произрастающий в сухих степях Европы, народ назвал «ястребиным колодцем». Это растение служит источником воды для степных птиц.

У суккулентов имеется мощная внутренняя водоносная ткань. У агав, алоэ и молодила она сосредоточена в листьях, у кактусов и некоторых молочаев — в стеблях. В засушливых условиях Мексики листья агавы достигают длины 3 м. После удаления молодой цветочной почки растение может давать до 7 л сока ежедневно.

