ЛЕКЦИЯ 3

Тема: Влияние условий окружающей среды на жизнедеятельность микроорганизмов. Основы экологии микроорганизмов. Антимикробные мероприятия в профилактике и лечении инфекционных болезней (стерилизация, дезинфекция, асептика, антисептика).

План:

- 1.Влияние на микроорганизмы физических, химических и биологических факторов
- 2.Симбиотические, антагонистические и паразитические взаимоотношения у микроорганизмов. Типы симбиоза.
- 3. Экологическая микробиология, санитарно-показательные микроорганизмы. Микрофлора почвы, водоёмов, воздуха, тела животных.
- 4. Антимикробные мероприятия в профилактике и лечении инфекционных болезней (стерилизация, дезинфекция, асептика, антисептика.)

Азот - Химический элемент, газ без цвета и запаха, составляющий основную часть воздуха и являющийся одним из главных элементов питания растений.

Химический элемент V группы периодической системы, атомный номер

7, атомная масса 14,0067.

В круговороте азота в природе с участием микроорганизмов различают следующие этапы:

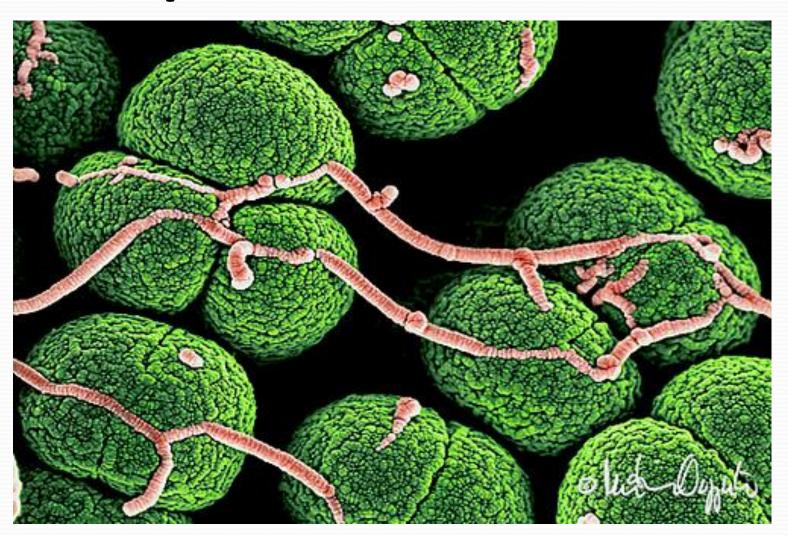
- усвоение атмосферного азота,
- аммонификацию,
- нитрификацию,
- денитрификацию.

Свободноживущие азотфиксаторы - живут и фиксируют азот в почве независимо от растений.

- Azotobacter chroococcum,
- Cl. pasteurianum

Клубеньковые бактерии — активные фиксаторы атмосферного азота в симбиозе с бобовыми растениями.

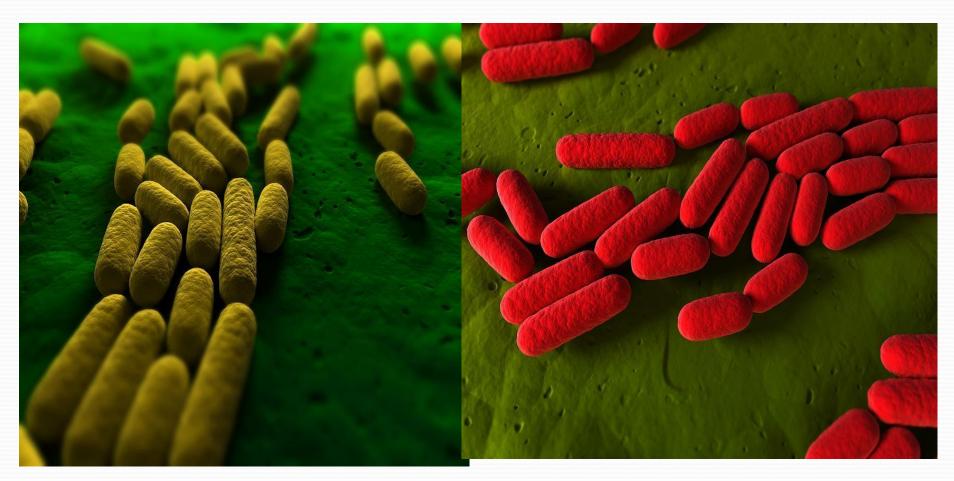
Bact. radicicola



Аммонификация - это минерализация азотсодержащих органических веществ, протекающая под воздействием аммонифицирующих микробов, выделяющих протеолитические ферменты.

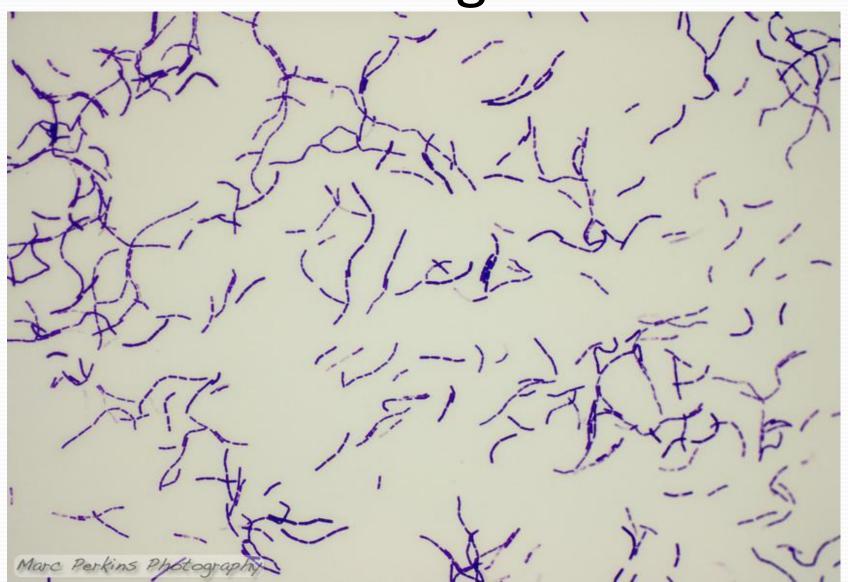
Микроорганизмы, разлагающие мочевину:

- Bac. probatus
- Sporosa rcinaureae


Sporosarcina ureae

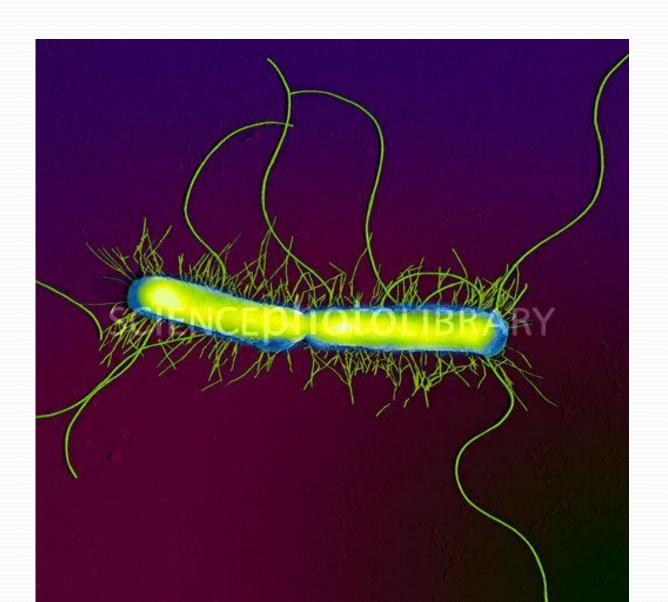
Спорообразующие аэробы

- Bac. mesentericus (картофельная бактерия),
- Bac. megatherium (капустная бактерия),
- Bac. subtilis (сенная палочка),
- Bac. mycoides (грибовидная бацилла).

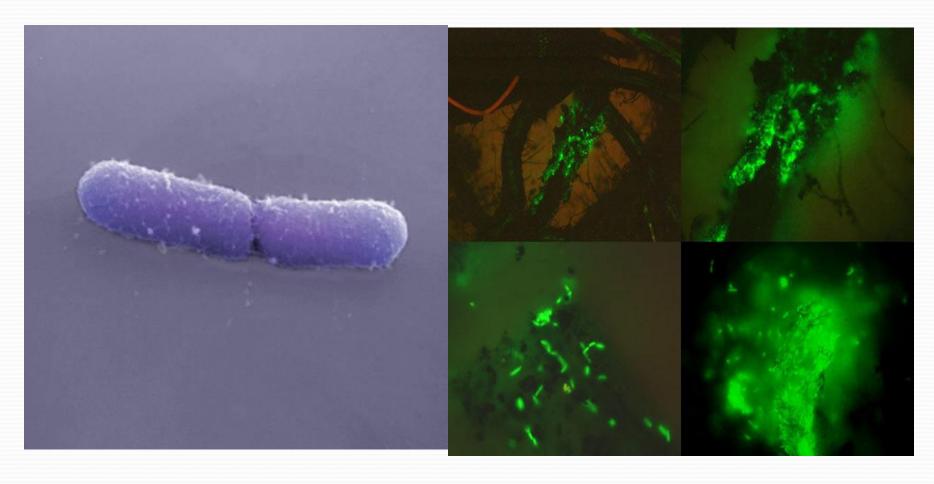

Bacillus subtilis

Bacillus mycoides

Bacillus Megaterium


Не образующие спор аэробные аммонификаторы:

- E. coli,
- Proteus vulgaris,
- •Ps. fluorescens.


Escherichia coli

Proteus vulgaris

Pseudomonas fluorescens

К анаэробным спорообразующим аммонификаторам относятся:

- Cl. putrificum (газообразующая клостридия),
- Cl. sporogenes.
- Аммонификацию вызывают также актиномицеты, грибы, триходермы, живущие в почве.

Рис. 40.

Clostridium (800×).

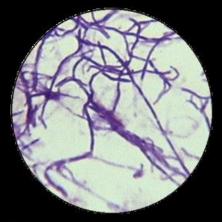
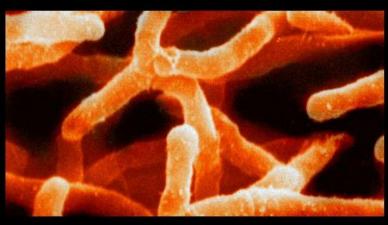
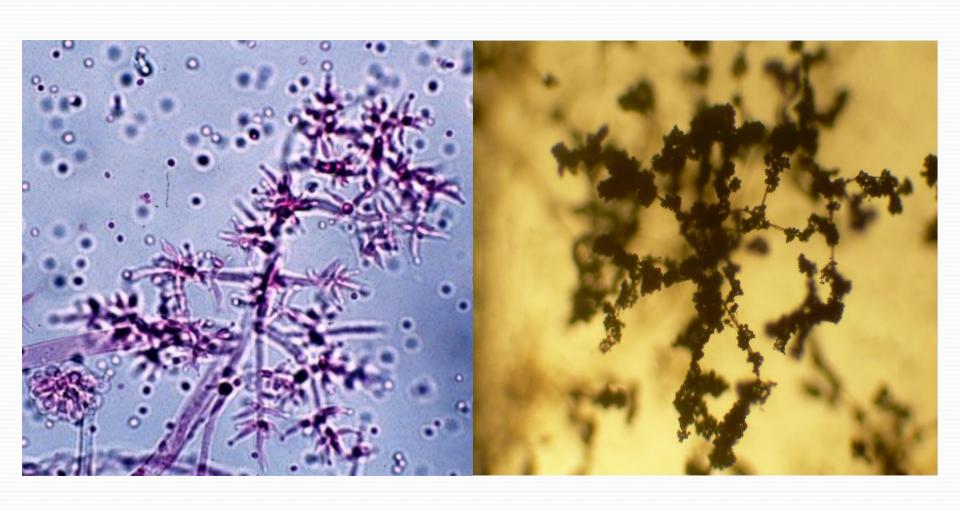

putrificum

Рис. 4


41. Clostridium (1350×).

sporogenes

АКТИНОМИЦЕТЫ



Trichoderma species

Колонии триходерм

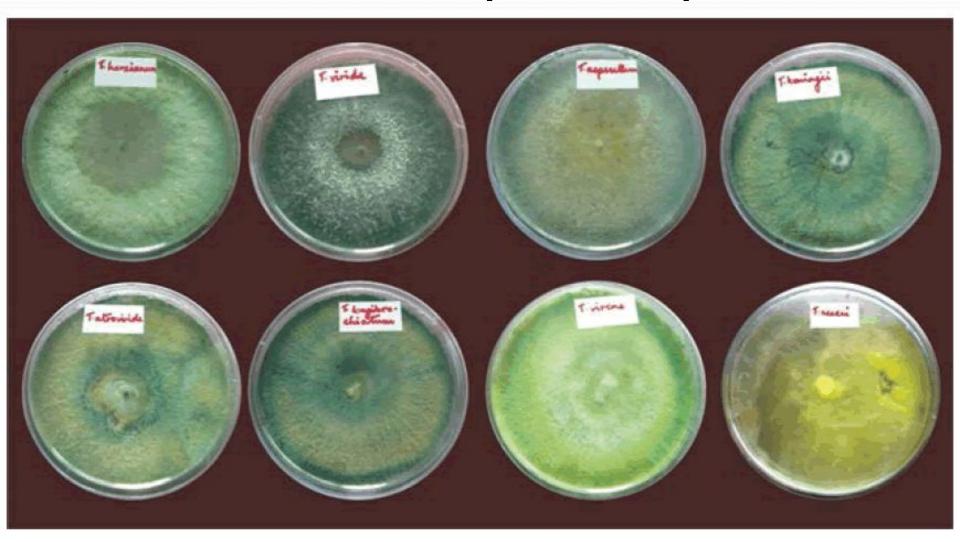


Figure 1: Eight different isolated strains of Trichoderma.


Нитрификация – это окисление аммиака до азотной кислоты.

Процесс осуществляют хемолитотрофные бактерии, объединяемые в семейство Nitrobacteriaceae.

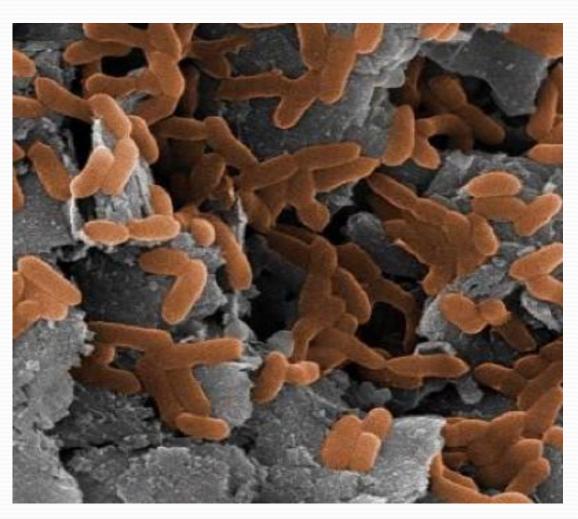
Нитрификация протекает в два этапа:

- 1. Окисление аммиака до нитрита осуществляют бактерии родов: Nitrosomonas, Nitrosococcus, Nitrosolobus, Nitrosospira, Nitrosovibrio.
- 2. Окисление нитрита до нитрата осуществляют бактерии родов: Nitrobacter, Nitrospira, Nitrococcus.

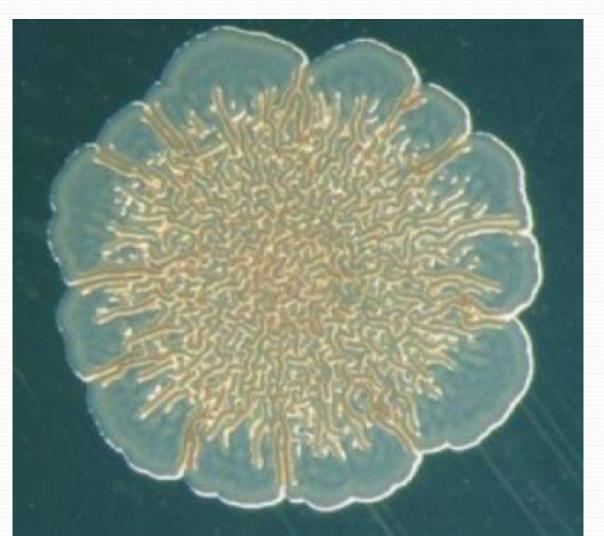
Бактерия рода Nitrosomonas

Nitrospirae

Нитрифицирующие бактерии открыты в 1899 г. русским ученым С. Н. Виноградским



Он показал, что эти микроорганизмы обладают автотрофными свойствами и исключительной специфичностью действия.

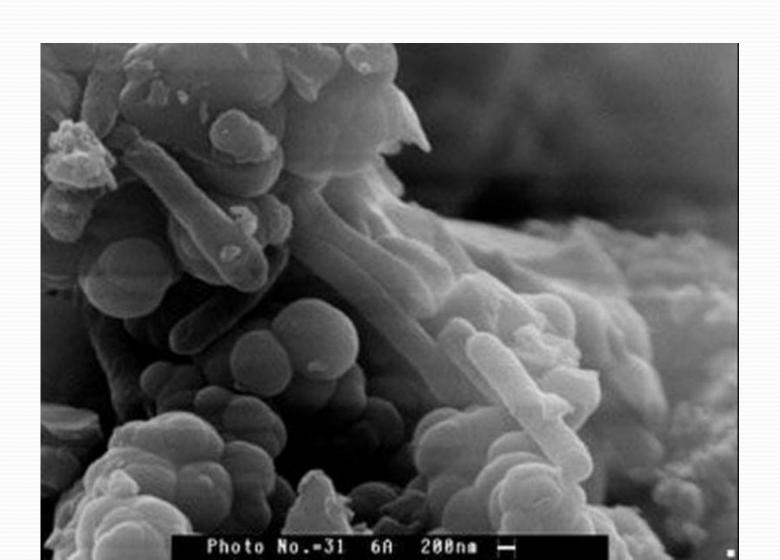

Денитрификация, представляет собой восстановление нитратов с образованием в качестве конечного продукта молекулярного азота, возвращающегося из почвы в атмосферу.

- Вызывается этот процесс денитрифицирующими бактериями, из которых наиболее распространены в природе:
- Tiolacillus denitrificans палочка, не образующая спор, факультативный анаэроб;
- Ps. fluorescens подвижная палочка, выделяет зеленоватый пигмент, быстро разлагает нитраты;
- Ps. aeruginosa бактерия сходна с предыдущей;
- Ps. Stutzeri небольшая палочка, образующая цепочки, разлагает нитраты в анаэробных условиях.


Thiobacillus Denitrificans

Pseudomonas Fluorescens колония

Pseudomonas **stutzeri** колонии

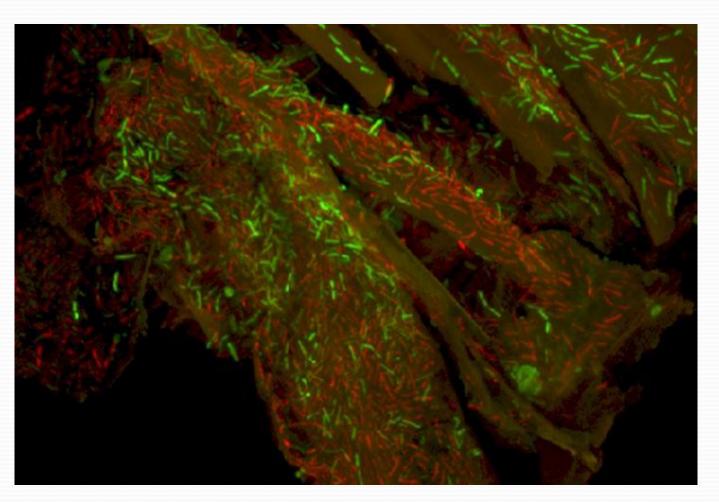

Важнейшим органогеном, входящим в состав микробов, растений, животных, является углерод. В клеточном веществе этот элемент составляет около 50 % сухого вещества.

C

• Усвоение углерода с использованием солнечной энергии называется фотосинтезом, а с использованием химической энергии — химиосинтезом.

- К фотоавтотрофам относят цветные бактерии: зеленые содержат в цитоплазме хлорофилл, а пурпурные красный или коричневый пигмент. Наиболее значимы из них нитрифицирующие бактерии, окисляющие аммиак в соли азотистой кислоты.
- К химиоавтотрофам относятся Тионовые бактерии

тионовые бактерии Thiobacillus ferrooxidans

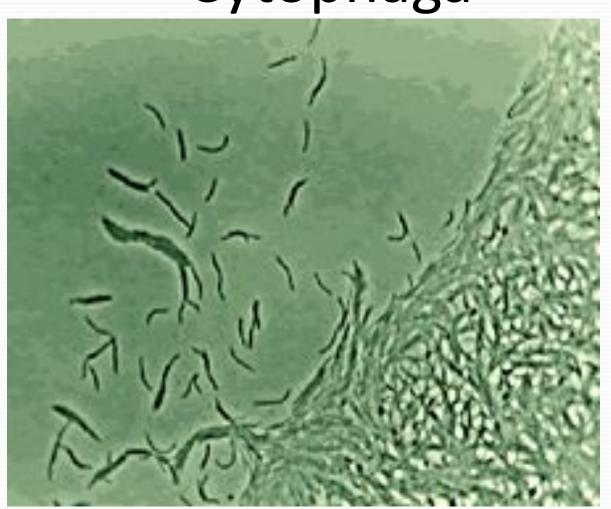


Брожение — метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода.

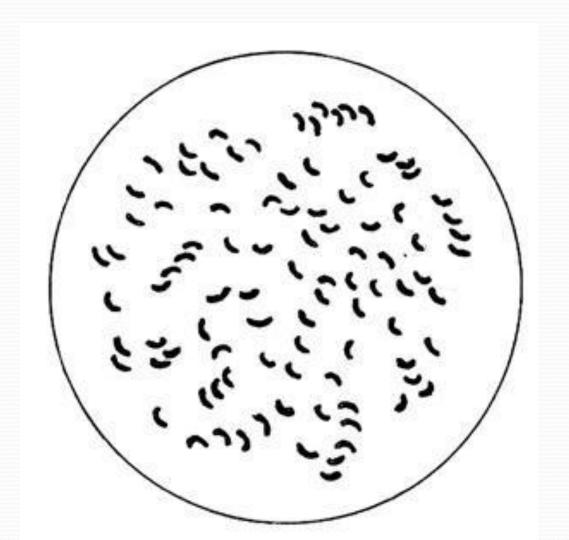
Брожение клетчатки.

- Наиболее интенсивно клетчатка разлагается целлюлозными микробами в пищеварительном аппарате травоядных животных. Различают анаэробное и аэробное брожение клетчатки.
- Интенсивно разлагают клетчатку в навозе в анаэробных условиях термофильный микроб Cl. termocelum, согревая его до 60—65°C.

Clostridium thermocellum

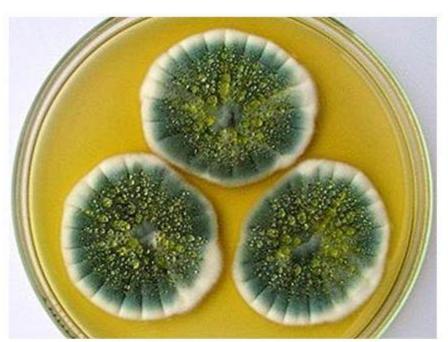

- Аэробное брожение клетчатки наиболее интенсивно происходит под влиянием следующих трех родов микроорганизмов:
- Cytophaga подвижных длинных палочек с заостренными концами,
- Cellvibrio изогнутых палочек,
- Celfacicula коротких палочек.

В аэробных условиях клетчатку разлагают также актиномицеты и плесневые грибы родов

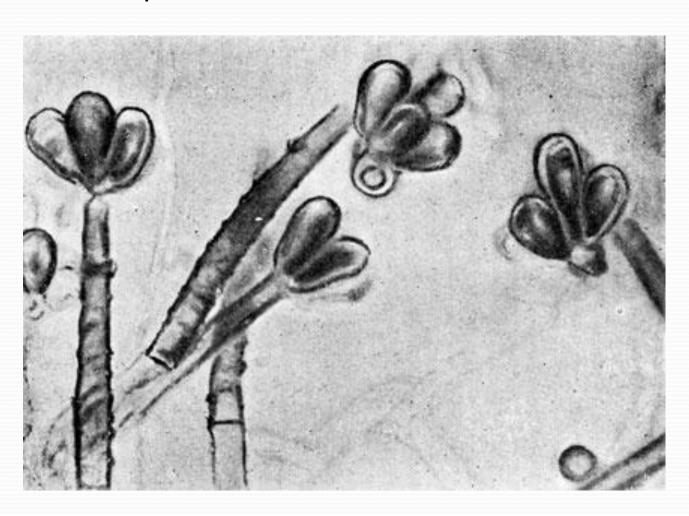

Aspergillus,

Penicillium и др

Cytophaga


Cellvibrio

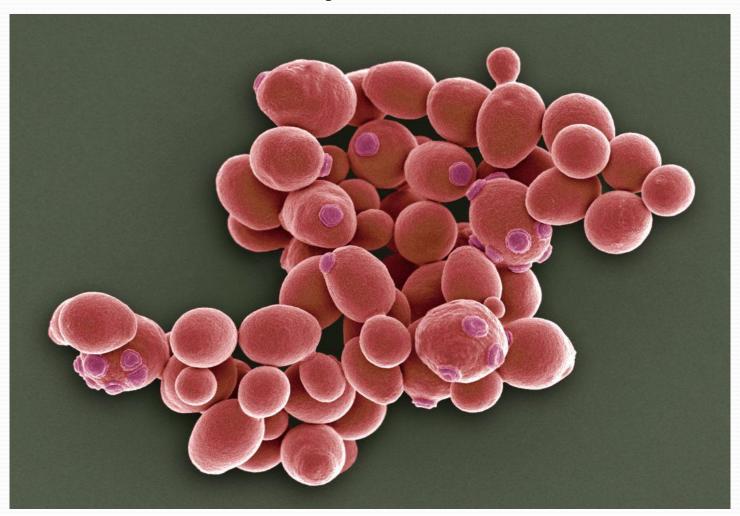
Penicillium digitatum


Пениниллины

Плесневый гриб Penicillium chrysogenum

Среди грибов, разрушающих клетчатку, особое значение имеет Stachybotris alternans, вызывающий тяжелое заболевание животных.

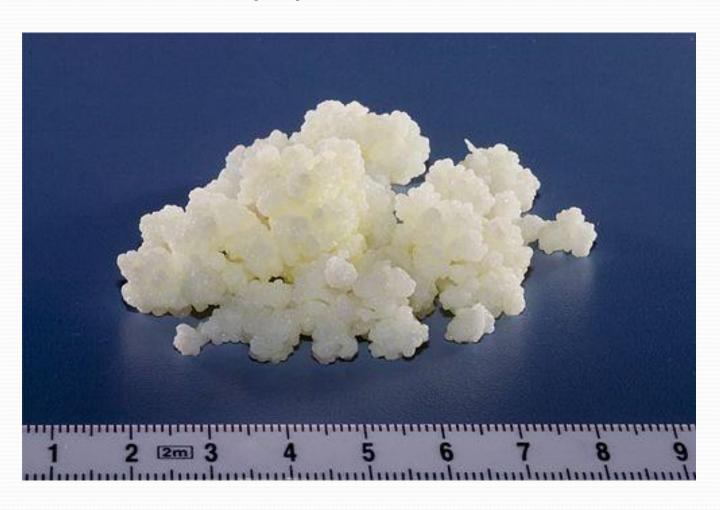
Весьма вредоносный разрушитель одревесневшей клетчатки (древесины) — домовой гриб Merulium lacrymans.



<u>Брожение пектиновых вещест</u> <u>в</u>.

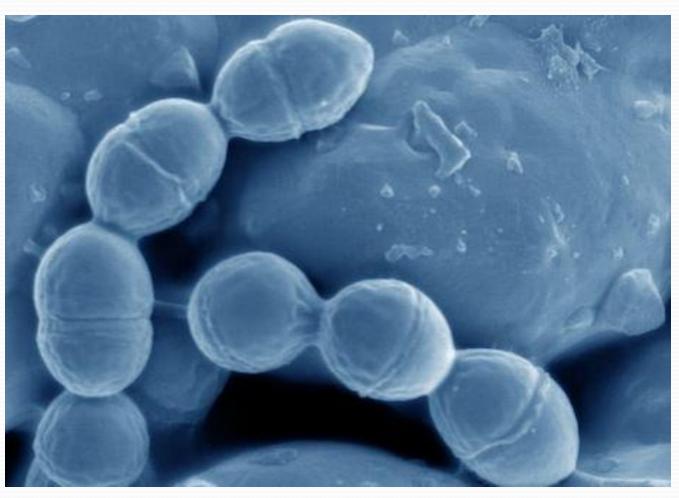
• При нагревании пектиновые вещества приобретают студневидную консистенцию (пектис — студень). Возбудители этого брожения — Cl. pectinovorum — спорообразующие подвижные крупные палочки.

- Спиртовое брожение вызывается дрожжевыми грибами, разлагающими сахара ферментом зимазой с образованием этилового спирта и угл Saccharomyces cerevisiae — пекарские, хлебные дрожжи —овальные клетки величиной 8—10 мкм. Они вызывают верховое и низовое брожение: **Верховое** - при температуре 14—24°С с обильным выделением газа, при этом дрожжи поднимаются вверх, образуя пленку. Этот вид брожения используется в хлебопечении и виноделии.
- Низовое -при температуре 4—10 °С, дрожжи размножаются медленно в нижних слоях, используется в пивоварении. екислоты


Saccharomyces cerevisiae

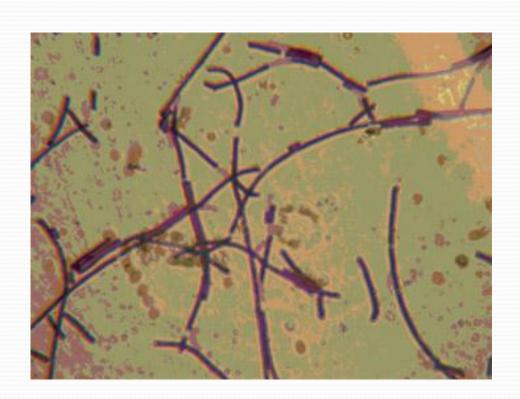
Tarulautilis — кормовые дрожжи — крупные, круглые клетки, обладающие энергичным ростом, цитоплазма их богата жиром.

Torula kephir — кефирные дрожжи — овальные и круглые клетки, сосредоточивающиеся в кефире колониями.



<u>■Молочнокислое брожение</u>.

Микробиологический характер этого процесса установил Л. Пастер.


- В результате молочнокислого брожения, главным образом сахара, а также многоатомные спирты и белки расщепляются до молочной кислоты.
- Молочнокислое брожение анаэробный процесс, протекающий без кислорода.

Streptococcus lactis — шарообразные или овальные клетки этого микроба располагаются попарно, но чаще цепочками; образует 0,8—1 % молочной кислоты.

Bact. bulgaricum

впервые выделена И. И. Мечниковым из болгарской простокваши; это неподвижная длинная, не образующая спор палочка, оптимальная температура для нее 40—48°С, накапливает 3—3,5% молочной кислоты.

Bact. acidophilum — морфологически и физиологически сходна с болгарской палочкой.

- Bact. casei— неподвижная палочка, встречаются короткие и длинные формы, располагающиеся цепочками.
- Bact. Delbrucki неподвижная, длинная, бесспоровая палочка, накапливает более 2 % молочной кислоты, а в среде с мелом до 10 %, в промышленных условиях является продуцентом молочной кислоты.
- Bact. brassicum основной возбудитель брожения при сквашивании капусты, накапливает около 2 % молочной кислоты.
- Bact. cucumerisfermentati— возбудитель брожения при засолке огурцов, накапливает 1 % молочной кислоты.

- Уксуснокислое окисление
 микробиологический процесс окисления
 этилового спирта в уксусную кислоту.
- Природу его впервые установил Л. Пастер, доказав ведущую роль в нем бактерий.
- Род уксуснокислых бактерий Acetobacter состоит из 11 видов, среди них главной является Васt. aceti уксусная палочка. Это неподвижная, короткая, бесспоровая, аэробная палочка, располагается изолированно, но чаще длинными цепочками.
- Уксуснокислое брожение имеет важное практическое значение при силосовании кормов.

- При длительном хранении пива, сухих (не крепленных спиртом) вин на их поверхности появляется морщинистая пленка, носящая название «уксусная матка», или Mycoder maaceti.
- Она состоит из трех наиболее распространенных в природе уксуснокислых бактерий —
- Acetobacteraceti,
- A. pasteurianurn
- A. kutringianurn.

- Маслянокислое брожение впервые изучил Л. Пастер, вызывается оно маслянокислыми микробами, разлагающими углеводы с образованием масляной кислоты.
- Маслянокислые микробы в большинстве анаэробы, они широко распространены в природе.
- Одновременно с углеводами они разлагают жиры и белки, при этом вначале образуются промежуточные продукты — пировиноградная кислота, уксусный альдегид, затем масляная кислота и побочные продукты — ацетон, бутиловый спирт, углекислота, водород.

- Маслянокислое брожение вызывает около 25 видов микроорганизмов.
 Основные из них:
- Cl. pasteurianum,
- Cl. pectinovorum,
- Cl. felsineum.
- Это подвижные крупные палочки с закругленными концами, образуют споры, приобретая характерную веретенообразную форму.

Размножаясь в консервах, они образуют газы, вызывающие вздутие банок (бомбаж).

Puc. 39. Clostridium pasteurianum При накапливании в силосе масляной кислоты в количестве 0,3—0,4 % он плохо поедается животными. Маслянокислые микробы участвуют в самосогревании влажного зерна, сена.

- Лимфоидная ткань состоит из ретикулярных клетоки лимфоцитов, находящихся между этими клетками.
- Основными функциональными клетками иммунной системы являются лимфоциты, подразделяющиеся на Т- и Влимфоциты и их субпопуляции.

Реактивность – это способность организма отвечать на раздражения изменением своей жизнедеятельности, что обеспечивает адаптацию к условиям среды.

Она может быть:

- недостаточной,
- избыточной
- извращенной на один и тот же антигенный раздражитель

иммунологическая реактивность-способность организма проявлять защитно-иммунологические функции в отношении возбудителей инфекционных болезней.

Различают <u>общую</u> и <u>специфическую</u> <u>иммунологическую реактивность.</u>

- Общая -потенциальная способность организма отвечать иммунологической реакцией на любой антигенный раздражитель.
- Специфическая -способность организма отвечать иммунологической реакцией на конкретный возбудитель болезни или антиген.

Резистентность - состояние устойчивости организма, обусловленное реактивностью организма.

Иммунитет - это способ защиты организма от действия различных веществ и организмов, вызывающих деструкцию его клеток и тканей, характеризующийся изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.

Возбудители инфекционных болезней (антигены) при попадании в организм животных вызывают два вида реакций:

- а) неспецифические
- б) специфические

- Разнообразие проявления неспецифических реакций может быть связано свозникновением трех специфических состояний:
- а) гиперчувствительности замедленного типа;
- б) гиперчувствительности немедленного типа;
- в) толерантности (ареактивности).
- Гиперчувствительность замедленного типа возникает в результате специфического изменения иммунокомпетентных клеток по отношению к определенному антигену без синтеза сывороточных антител.
- **Гиперчувствительность немедленного типа** обусловлена биосинтезом циркулирующих в крови антител, специфически реагирующих с определенным антигеном.
- **Толерантности** (ареактивности) организм теряет способность синтезировать антитела против определенного вида возбудителя (антигена), но способность образовывать антитела против других возбудителей сохраняется.

По времени проявления факторы иммунитета подразделяют на:

- <u>постоянные</u>
- проявляющиеся после проникновения патогенного микроба;

По характеру и диапазону действия — на:

- с<u>пецифические</u>
- <u> неспецифические</u>.
- К факторам постоянного действия относятся неспецифические факторы иммунитета:
- 1) защитные свойства кожи и слизистых оболочек;
- 2) защитные реакции нормальной микрофлоры;
- 3) воспаление и фагоцитоз, барьерные функции лимфоидной системы;
- 4) гуморальные факторы (лизоцим, нормальные антитела и т. д.);
- 5) физиологические факторы(температура, метаболизм обменных процессов);
- 6) генотипическая и фенотипическая реактивность клеток и тканей.

- К факторам, проявляющимся после проникнове-ния патогенного возбудителя, относятся:
- 1) неспецифические (воспаление, выработка интерферона С-реактивный белок, и т. д.);
- 2) специфические (макрофоги, плазмоциты, лимфоциты, иммуноглобулины).

Воспаление — защитно-приспособительная реакция, возникающая в месте внедрения микроба. Основным механизмом защиты воспаления является фагоцитоз, т. е. процесс поглощения клетками организма попадающих в него патогенных живых или убитых микробов.

После проникновения патогенного микроба либо после вакцинации появляются защитные специфические антитела (иммуноглобулины).

Анамнестическая реакция – это имунный ответ организма на повторное введение антигена, характеризующийся более высоким титром антител и более короткими сроками их появления по сравнению с первичным введением антигена; А. р. может свидетельствовать о ранее п еренесенном инфекционном заболевании.

Виды иммунитета

Иммунитет – способ защиты организма от болезнетворных микроорганизмов за счет выработки антител.

Вид	Способ
Естественный	Невосприимчивость ко
врожденный	многим болезням, данная от рождения.
Естественный приобретенный	Появляется после перенесенного заболевания.
Искусственный активный	Появляется после прививки.
Пассивный искусственный	Появляется при воздействии лечебной
	сыворотки.

- Стерильный иммунитет- когда после перенесенной болезни организм освобождается от возбудителя болезни, сохраняя при этом невосприимчивость.
- Нестерильный (инфекционный) иммунитеткогда при некоторых инфекционных болезнях иммунитет сохраняется только при наличии в организме возбудителя болезни (туберкулез, бруцеллез, сап, и т.д.).
- Антибактериальный иммунитет
- Антитоксический иммунитет
- Противовирусный

Различают также иммунитеты:

- гуморальный (защита преимущественно обеспечивается сывороточными антителами),
- клеточный (тканевый)невосприимчивость обуславливается
 защитными функциями тканей;
- фагоцитарный- связан со специфически сенсибилизированными (иммунными) фагоцитами.

Специфические иммунные реакции.

- В современных условиях с целью решения практических задач эпизоотологии наиболее часто применяют:
- серологические реакции (РСК, РА, РТГА, РНГА, РДП, РИФ, РИД;
- аллергические реации (бруцеллез, туберкулез, пуллроз, сап и др.);
- иммуноферментный, иммунорадиологический анализы и др.
- специфические иммунные реакции.

- **Аллергия**(греч.allos- иной, ergon- действую) повышенная и качественно извращенная реакция организма на повторное попадание в него веществ антигенного и неантигенного характера.
- **Аллергия** иммунные реакции, происходящие в сенсибилизированном организме.
- **Сенсибилизация** повышенная и качественно измененная чувствительность организма к некоторым веществам.
- **Аллергены** вещества, которые при попадании в организм могут изменять чувствительность.
 - они могут быть экзогенного и эндогенного происхождения.

Аллергены экзогенного происхождения:

- бактерии, вирусы, грибки, некоторые гельминты (аскариды), и их токсины;
- лекарственные вещества (сульфаниламиды, антибиотики);
- - вещества животного происхождения (эпидермис, шерсть, пух, частички волос);
- сыворотки (противорожистая, противостолбнячная);
- 🔸 чужеродные белки;
- пыльца растений;
- - химические вещества (стиральные порошки, краски).
- К <u>эндогенным</u> аллергенам относятся собственные перерожденные клетки.

Различают следующие виды аллергий:

По скорости возникновения:

- немедленного типа клинические признаки проявляются через 3-5 минут после попадания аллергена в организм (сывороточная болезнь, крапивница, сенная лихорадка, бронхиальная астма);
- замедленного типа при этом реакция развивается через 24-48часов (реакция на туберкулин, малеин).

По виду аллергена:

- -сывороточная,
- -инфекционная,
- -лекарственная,
- -животного происхождения,
- -растительная,
- -кормовая,
- -бытовая,
- -аутоаллергия.

Но степени нарушений, возникающих в организме:

- общая для возникновения достаточно однократной сенсибилизации организма;
- местная может развиваться только после многократ-ной сенсибилизации организма.
- Местные аллергические реакции используются с диагностической целью для диагностики туберкулёза, сапа.

По характеру сенсибилизации:

- неспецифическая организм сенсибилизируется одним аллергеном, а чувствительность повышается к другому аллергену.
- а) гетероаллергия аллергены неантигенного характера повышают чувствительность к аллергенам антигенного характера.
- б) парааллергия один аллерген антигенного характера повышает чувствительность организма к другому аллергену, но тоже антигенного характера.
- 2) специфическая повышенная и извращенная реакция проявляется к тому аллергену, которым организм был сенсибилизирован.
- Тяжелые формы такой аллергии называют анафилаксией.

- Десенсибилизация снятие повышенной чувствительности организма.
- Существует 2 вида десенсибилизации: специфическая и неспецифическая.
- **Специфическая** извращенная чувствительность снимается тем аллергеном, которым организм был сенсибилизирован.
- **Неспецифическая** повышенная чувствительность снимается с помощью таких химических веществ, как хлористый кальций, димедрол, пипольфен, супрастин, алкоголь.