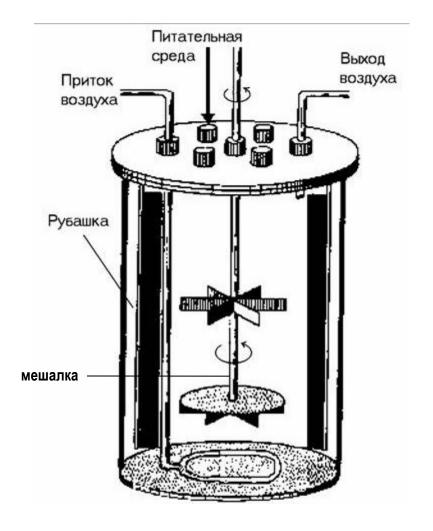
Лекция 2.

Слагаемые Биотехнологического процесса. Структура биотехнологического процесса.

План лекции

- 1. Схема производственного биотехнологического процесса.
- 2. Кривая роста микроорганизмов при полупериодическом режиме биотехнологического культивирования.
- 3. Выращивание посевного материала.
- 4. Различные виды стерилизации в биотехнологическом процессе.
- 5. Классификация биосинтеза по технологическим параметрам. Требования к продуцентам.

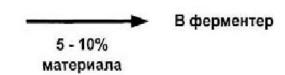

Схема производственного биотехнологического процесса

Устройство ферментера.

Ферментер — это аппарат для проведения ферментации и в тоже время это техногенная экологическая ниша. Существует такое название как «обвязка ферментера», представляющая все основные рабочие узлы этого аппарата:

- I. мешалка, для равномерного распределения всех продуктов среды,
- 2. тепловая рубашка для обогрева,
- 3. отбойники, препятствующие образованию «мертвых зон», то есть недоступных зон для регулирования ферментационного процесса,
- 4. слив для культуральной жидкости для последующего выделения целевого продукта,
- 5. барботер с воздухом для аэрации процесса ферментации,
- 6. клапаны для входа и выхода воздуха,
- 7. входное отверстие для загрузки ферментера.

Кривая роста микроорганизмов при полупериодическом, регулируемом режиме культивирования


Стадии роста микроорганизмов

- 1. Фаза приспособления, или так называемая фаза адаптации микроорганизмов, или лаг-фаза. В этой фазе нет деления и соответственно роста микроорганизмов, но есть увеличение количества белков, как ответная реакция на новые условия их существования.
- 2. Фаза ускоренного роста (переходная фаза). В этой фазе повышается содержание белков, РНК, нуклеиновых кислот, происходит уже деление клетки.
- 3. Эта фаза называется логарифмической фазой роста (экспоненциальная кривая), когда компонентов питания достаточно и биообъект полностью адаптирован к условиям в ферментере. Идет аэрация.

- 4. Фаза замедленного роста клеток. В этой фазе число клеток сокращается, так как и число делений сокращается. Уменьшается скорость роста микроорганизмов, так как по мере наращивания биомассы уменьшаются компоненты питательной среды. Клетки лизируются, происходит автолиз клетки, и они начинают уничтожать своих соседей (одни клетки съедают другие).
- 5. Фаза стационарная, когда количество живых клеток сохраняется за счет умерших и не происходит роста биомассы.
- 6. Фаза гибели клеток, когда число погибших клеток больше, чем живых.

Выращивание посевного материала

Культуру продуцента хранят:

- в запаянных ампулах
- в жидком азоте
- на твердых носителях пшено, ячмень
- в лиофилизированном состоянии лучше хранятся споры, чем живые клетки
- в ампулах в лиофилизированном состоянии на носителе (пшено, желатин-альгинат натрия)

- 2. Большое количество колб для выращивания молодой культуры (проверяют чистоту культуры под микроскопом.
- 3. Инокулятор, мешалка.
- 4. Посевной аппарат (с контролем).
- Такое количество стадий нужно для получения чистой культуры.
- Многоэтапное выращивание посевного материала обязательный принцип биотехнологического производства.
- Среда для выращивания посевного материала обычно не совпадает по составу с ферментационной средой, т.е. при выращивании посевного материала среда может быть обогащена для быстрого роста биомассы.

Стерилизация технологического воздуха

• Технологический воздух — это воздух, проходящий через ферментер. Через ферментер с объемом 50м³ (кубических метров за час) пропускается 30000 м³/час (кубических метров за час) воздуха. Обычный воздух содержит в 1 м³ (метр кубический) от 1 тысячи до 100 тысяч клеток микроорганизмов. Воздух стерилизуют только фильтрацией, пропуская его через систему фильтров, другие способы (УФ, термические) не подходят, так как нужно стерилизовать очень большие объемы воздуха.

Технологическая схема получения стерильного воздуха:

- Воздух с улицы поступает на → Фильтр предварительной очистки от пыли и влаги, затем поступает на → Компрессор (происходит сжатие воздуха, при этом воздух нагревается), затем на → Холодильник (для охлаждения воздуха, поступившего от компрессора, затем) → Воздух под давлением проходит через головной фильтр и подается на → Индивидуальный фильтр (у каждого ферментера).
- Индивидуальные фильтры не должны пропускать более 0,25 микрона (мкм) микроорганизмов. Размеры микроорганизмов кокки составляют 0,5-1,5 мкм, кишечные палочки 0,4- 0,8 мкм.
- Существует коэффициент проскока, поэтому фильтры 100% стерилизацию дают не всегда. Фильтры стерилизуются острым паром при 120°C 30 мин.

Стерилизация и герметизация оборудования.

 Ферментер и все трубопроводы стерилизуют насыщенным паром при 130°С 1 час. Для проверки эффективности стерилизации проводят пробную стерилизацию с использованием биологического теста.

Стерилизация питательных сред.

- Водопроводная вода содержит до 100 микробных клеток в 1 миллилитре. Компоненты питательной среды источники углерода, азота, содержат в 1 грамме муки от 10000 до 1 миллиардов клеток микроорганизмов.
- Питательную среду стерилизуют термическим нагреванием, но при этом могут инактивироваться термолабильные соединения, витамины и др. Поэтому для каждой среды имеются свои условия стерилизации.
- Стерилизация процесс вероятностный.

Классификация биосинтеза по технологическим параметрам.

- I. По принципу организации материальных потоков
- II. Классификация по виду целевого продукта:
- 1. Получение биомассы
- 2. Получение метаболитов (первичных витамины, аминокислоты, вторичных антибиотики)
- III Классификация по типу ферментации:
- 1. Глубинный биосинтез (по всему объему ферментера) широко используется.
- 2. Поверхностный биосинтез (продуцент растет по поверхности среды)

Требования к продуцентам

- Безвредность.
- 2. Устойчивость к фагам и вирусам.
- 3. Активность биосинтеза, скорость роста и накопление биомассы.
- 4. Стабильность по производительности.
- 5. Чувствительность к условиям культивирования (аэрация, pH (кислотность среды), температура).
- 6. Потребность в источниках углеводов и азота.
- 7. Использование дешевых и доступных питательных сред.
- 8. Соответствие условиям промышленного производства (отсутствие неприятного запаха, не слишком большая вязкость его среды).

Вопросы для самоконтроля.

- I. Назовите основные и сопутствующие стадии биотехнологического процесса.
- 2. От чего зависит сложность биотехнологического процесса. Приведите примеры процессов различной сложности.
- 3. Ферментер. Основные части ферментера.
- 4. Кривая роста микроорганизмов при полупериодическом регулировании режима культивирования.
- 5. Назовите способы хранения продуцента, используемые в биотехнологических процессах.
- 6. Как осуществляется выращивание посевного материала?
- 7. Совпадает ли среда для выращивания посевного материала со средой в ферментере?
- 8. Характеристика технологического воздуха.
- 9. Технологическая схема получения стерильного воздуха.
- 10. Стерилизация и герметизация оборудования.
- 11. Стерилизация питательных сред.
- 12. Классификация биосинтеза по технологическим параметрам.
- 13. Способы предупреждения попадания продуцентов в окружающую среду.