

Figure 15-10

Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company

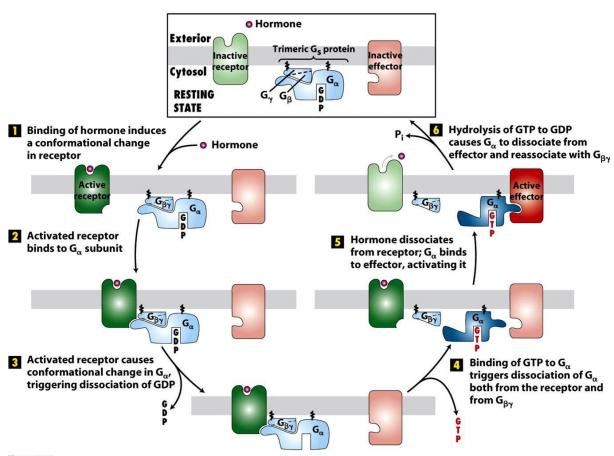
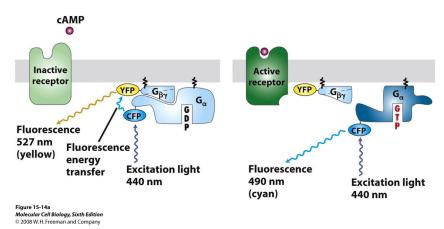



Figure 15-13

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company

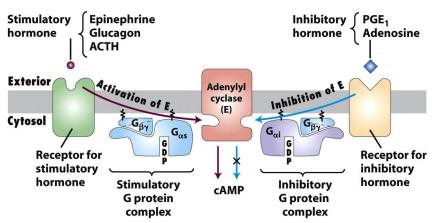


Figure 15-21 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

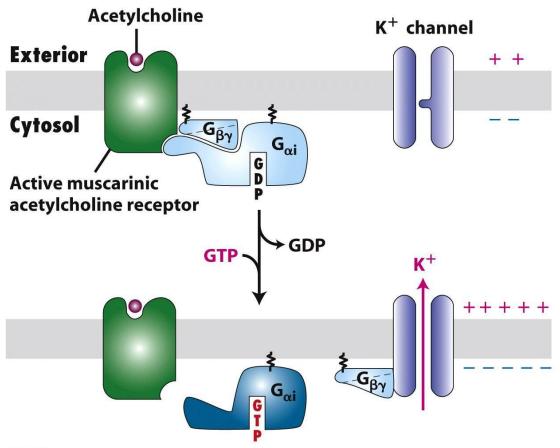


Figure 15-15

Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company

TABLE 15-1 Major Classes of Mammalian Trimeric G Proteins and Their Effectors*					
${\sf G}_{\alpha}$ CLASS	ASSOCIATED EFFECTOR	2ND MESSENGER	RECEPTOR EXAMPLES		
$G_{\alpha s}$	Adenylyl cyclase	cAMP (increased)	β-Adrenergic (epinephrine) receptor; receptors for glucagon, serotonin, vasopressin		
$G_{\alpha i}$	Adenylyl cyclase K ⁺ channel (G _{βγ} activates effector)	cAMP (decreased) Change in membrane potential	α ₂ -Adrenergic receptor Muscarinic acetylcholine receptor		
$G_{\alpha olf}$	Adenylyl cyclase	cAMP (increased)	Odorant receptors in nose		
$G_{\alpha q}$	Phospholipase C	IP ₃ , DAG (increased)	α ₁ -Adrenergic receptor		
$\boldsymbol{G}_{\alpha o}$	Phospholipase C	IP ₃ , DAG (increased)	Acetylcholine receptor in endothelial cells		
$G_{\alpha t}$	cGMP phosphodiesterase	cGMP (decreased)	Rhodopsin (light receptor) in rod cells		

^{*}A given G_{α} subclass may be associated with more than one effector protein. To date, only one major $G_{\alpha s}$ has been identified, but multiple $G_{\alpha q}$ and $G_{\alpha i}$ proteins have been described. Effector proteins commonly are regulated by G_{α} but in some cases by $G_{\beta \gamma}$ or the combined action of G_{α} and $G_{\beta \gamma}$. IP₃ = inositol 1,4,5-trisphosphate; DAG = 1,2-diacylglycerol.

SOURCES: See L. Birnbaumer, 1992, Cell 71:1069; Z. Farfel et al., 1999, New Eng. J. Med. 340:1012; and K. Pierce et al., 2002, Nature Rev. Mol. Cell Biol. 3:639.

Table 15-1 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

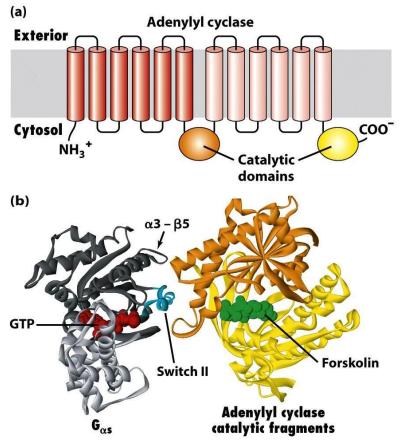


Figure 15-22 Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

TABLE 15-2	Cellular Responses to Hormone	-Induced Rise in cAMP in Various Tissues*
TISSUE	HORMONE INDUCING RISE IN CAMP	CELLULAR RESPONSE
Adipose	Epinephrine; ACTH; glucagon	Increase in hydrolysis of triglyceride; decrease in amino acid uptake
Liver	Epinephrine; norepinephrine; glucagon	Increase in conversion of glycogen to glucose; inhibition of glycogen synthesis; increase in amino acid uptake; increase in gluconeogenesis (synthesis of glucose from amino acids)
Ovarian follicle	FSH; LH	Increase in synthesis of estrogen, progesterone
Adrenal cortex	АСТН	Increase in synthesis of aldosterone, cortisol
Cardiac muscle	Epinephrine	Increase in contraction rate
Thyroid gland	TSH	Secretion of thyroxine
Bone	Parathyroid hormone	Increase in resorption of calcium from bone
Skeletal muscle	Epinephrine	Conversion of glycogen to glucose
Intestine	Epinephrine	Fluid secretion
Kidney	Vasopressin	Resorption of water
Blood platelets	Prostaglandin I	Inhibition of aggregation and secretion

^{*}Nearly all the effects of cAMP are mediated through protein kinase A (PKA), which is activated by binding of cAMP. SOURCE: E.W. Sutherland, 1972, Science 177:401.

Table 15-2

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company

Протеинкиназа А

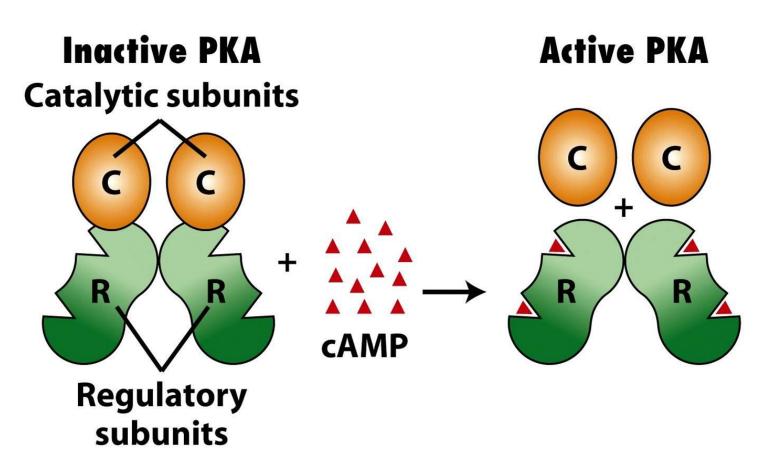


Figure 15-23a

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company

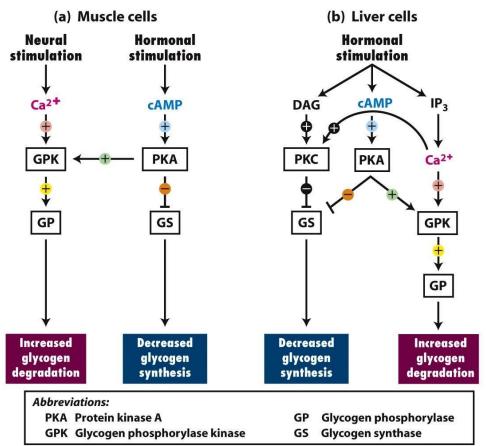
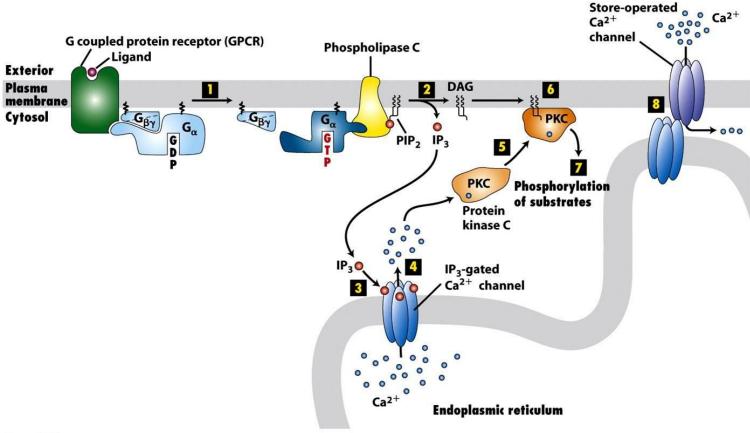



Figure 15-32

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company

Протеинкиназа С

2 ответа: эндотелий сосудов и гладкие мышцы

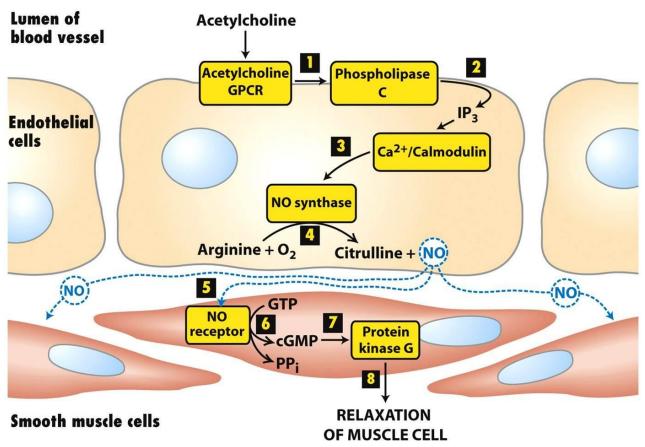


Figure 15-31

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company

TABLE 15-3 Cellular Responses to Hormone-Induced Rise in Cytosolic Ca ²⁺ in Various Tissues*					
TISSUE	HORMONE INDUCING RISE IN CA2+	CELLULAR RESPONSE			
Pancreas (acinar cells)	Acetylcholine	Secretion of digestive enzymes, such as amylase and trypsinogen			
Parotid (salivary) gland	Acetylcholine	Secretion of amylase			
Vascular or stomach smooth muscle	Acetylcholine	Contraction			
Liver	Vasopressin	Conversion of glycogen to glucose			
Blood platelets	Thrombin	Aggregation, shape change, secretion of hormones			
Mast cells	Antigen	Histamine secretion			
Fibroblasts	Peptide growth factors (e.g., bombesin and PDGF)	DNA synthesis, cell division			

^{*}Hormone stimulation leads to production of inositol 1,4,5-trisphosphate (IP_3), a second messenger that promotes release of Ca^{2+} stored in the endoplasmic reticulum.

SOURCE: M. J. Berridge, 1987, Ann. Rev. Biochem. 56:159; M. J. Berridge and R. F. Irvine, 1984, Nature 312:315.

Table 15-3

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company