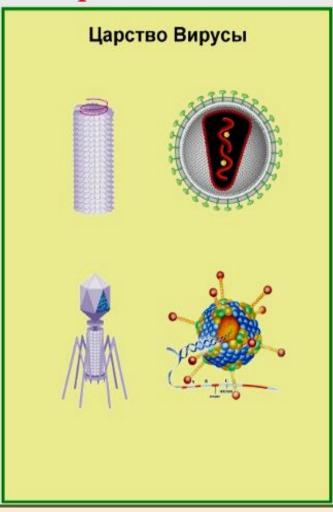
СИСТЕМА ПРИРОДЫ

Империя Клеточные

Надцарство Прокариоты Царство Дробянки

Подцарство Архебактерии Подцарство Настоящие бактерии Подцарство Цианобактерии

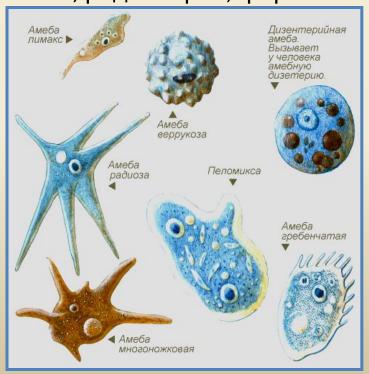

Надцарство Эукариоты

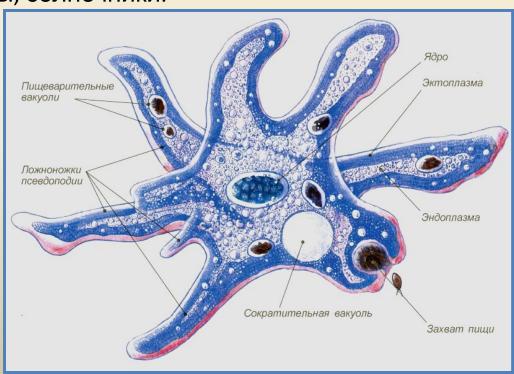
Империя Неклеточные

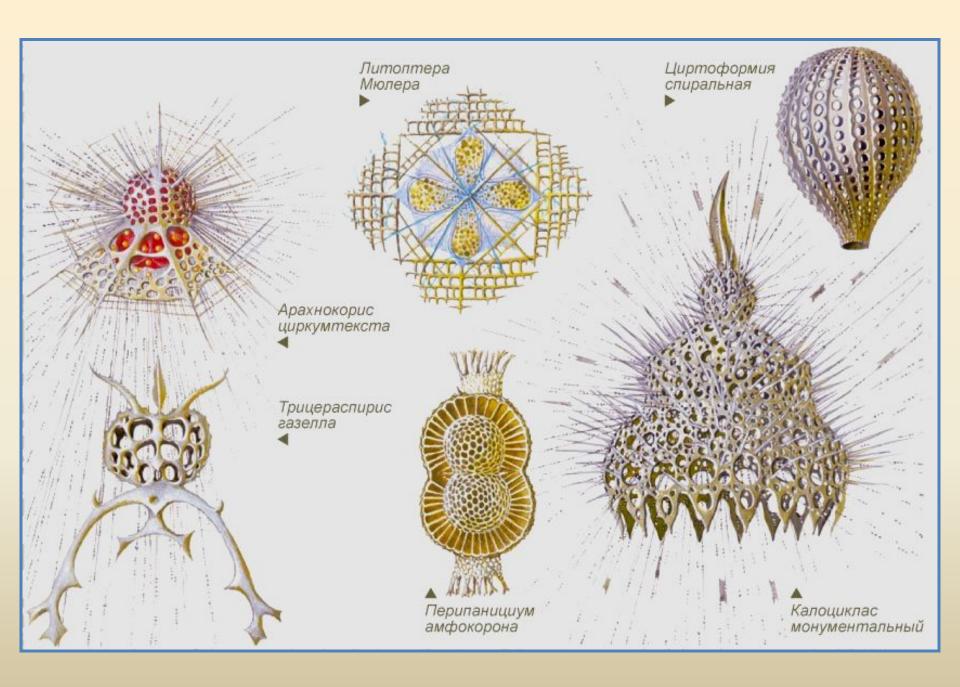
Подцарство Простейшие

Тип Саркомастигофоры (Корнежгутиковые) Подтип Саркодовые (Корненожки)

Класс Корненожки, класс Радиолярии, класс Солнечники.

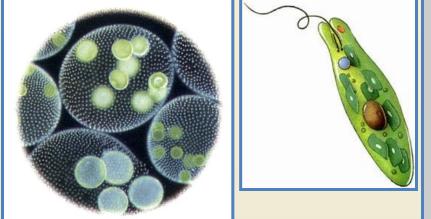

Строение. Форма тела непостоянная, некоторые виды имеют раковинки или внутренний скелет. Органоиды движения ложноножки. В цитоплазме различают эктоплазму и эндоплазму.

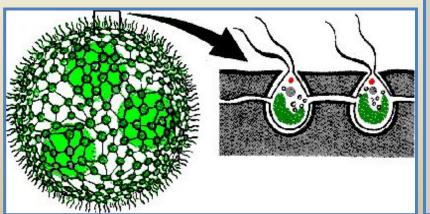

Питание. Захват пищи происходит с помощью ложноножек.

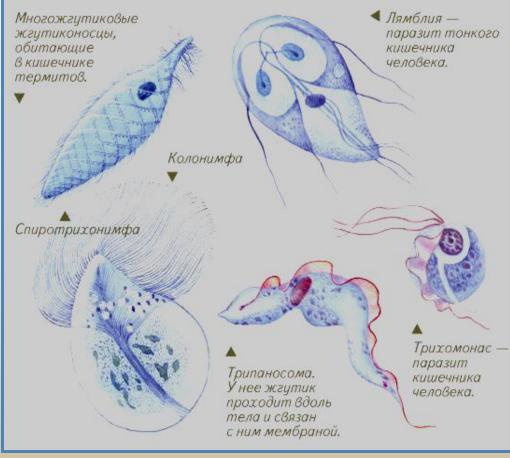

Выделение непереваренных остатков происходит в любом участке клетки. При наступлении неблагоприятных условий способны к инцистированию.

Размножение. Большинство видов размножается бесполым способом. Представители. Амеба обыкновенная, амеба дизентерийная, раковинные

амебы, радиолярии, фораминиферы, солнечники.

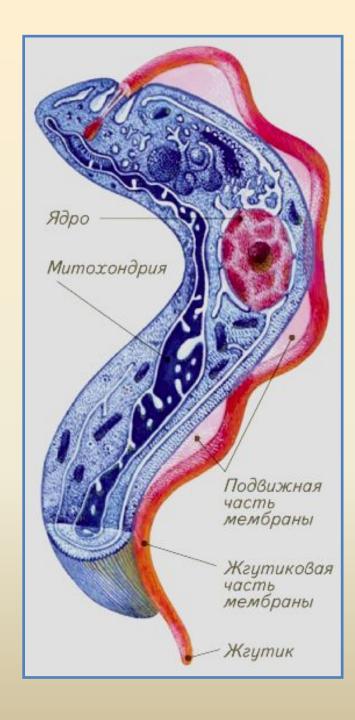

Подтип Мастигофоры (Жгутиконосцы)


Форма тела постоянная, имеется пелликула. Ядро обычно одно, но есть многоядерные, например опалина. Органоиды движения — один или несколько жгутиков.

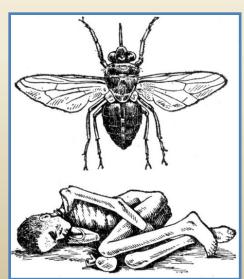

Два класса: Растительные жгутиконосцы и Животные жгутиконосцы. Растительные жгутиконосцы способны к смешанному (миксотрофному) питанию. К ним относится эвглена зеленая, вольвокс. Имеют одно ядро. Бесполое размножение происходит с помощью продольного митотического

деления клетки, половое размножение осуществляется с образованием и

слиянием гамет (у вольвокса).

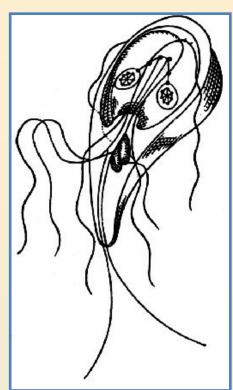


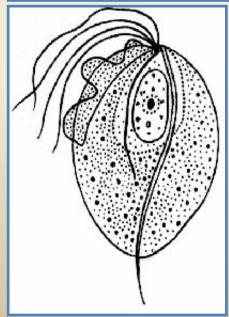
Эвглена обитает в пресных водоемах. Имеет один жгутик, одно ядро, постоянную форму тела вследствие наличия пелликулы. Свойствен миксотрофный способ питания. В передней части тела имеется глотка. Размножение — только бесполое, продольным митотическим делением.


Вольвокс — колония жгутиковых животных, имеющая шаровидную форму. Клетки колонии называются зооидами. Центральная часть колонии заполнена студенистым веществом.

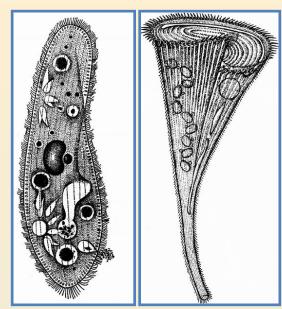
Среди клеток имеется специализация: они могут быть вегетативными и генеративными. Генеративные зооиды связаны с воспроизведением. Весной генеративные зооиды погружаются внутрь колонии и там митотически делятся, образуя дочерние колонии. Затем материнская колония разрушается, а дочерние колонии начинают самостоятельное существование. Осенью из генеративных зооидов образуются макрогаметы и микрогаметы. Происходит копуляция гамет, зигота зимует, делится мейотически, и гаплоидные зооиды образуют новую колонию. Класс Животные жгутиконосцы. Питание гетеротрофное. Среди них имеются как сапротрофные, паразитические и хищные организмы. Сапротрофные организмы — это бесцветные жгутиковые, питающиеся продуктами распада органических веществ. Хищные жгутиковые питаются бактериями, одноклеточными водорослями, простейшими. К паразитическим жгутиконосцам относятся, например, трипаносомы, лейшмании. Эти животные вызывают болезни, которые относятся к категории трансмиссивных, заболевания, возбудитель которых передается через укус кровососущего насекомого или клеща.

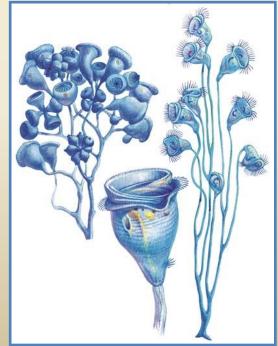
Трипаносомы вызывают «сонную болезнь», на начальных этапах паразитируют в крови больного, затем переходят в спинномозговую жидкость, вызывают сонливость, затем наступает смерть больного от истощения. Переносчиком возбудителя болезни являются мухи цеце, источником инвазии — копытные животные (антилопы) и больные люди. В настоящее время заболевание лечится.


Некоторые виды лейшманий вызывают кожный лейшманиоз («пендинскую язву»), переносчиком возбудителей являются москиты, источником инвазии — дикие грызуны или больные люди.


Лямблия кишечная — паразит желчных протоков, тонкого кишечника. В толстой кишке инцистируется. Заражение цистами, перорально.

Трихомонада урогениальная — паразитирует в мочеполовых путях. Вызывает воспалительные процессы. ______

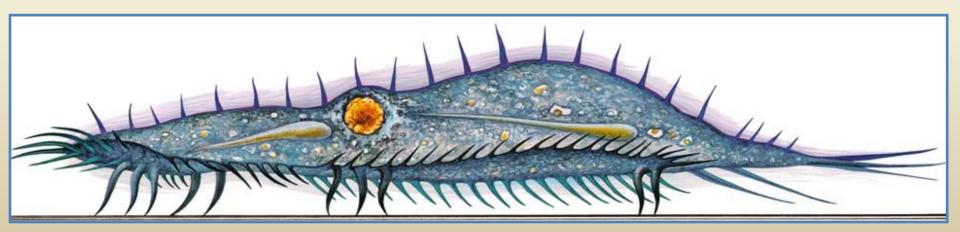


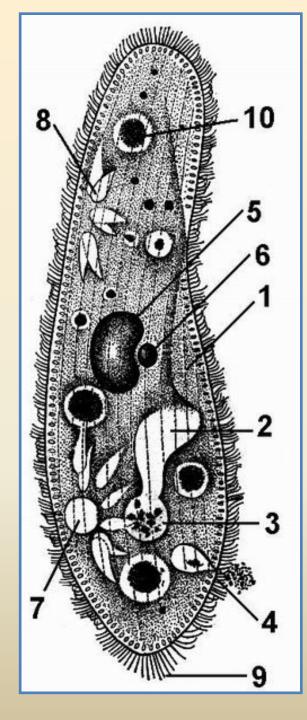

Тип Инфузории. Класс Ресничные инфузории

К типу относятся около 7,5 тыс. видов наиболее высокоорганизованных простейших, особенности строения рассмотрим на примере инфузории туфельки. Форма тела постоянная благодаря эластичной и прочной пелликуле.

Активно передвигаются с помощью ресничек. Другой важный признак — наличие двух ядер: крупного полиплоидного вегетативного ядра — макронуклеуса и мелкого диплоидного генеративного ядра микронуклеуса.

В эктоплазме многих инфузорий находятся особые защитные приспособления — *трихоцисты*. При раздражении животного они выстреливают длинную упругую нить, парализующую добычу.

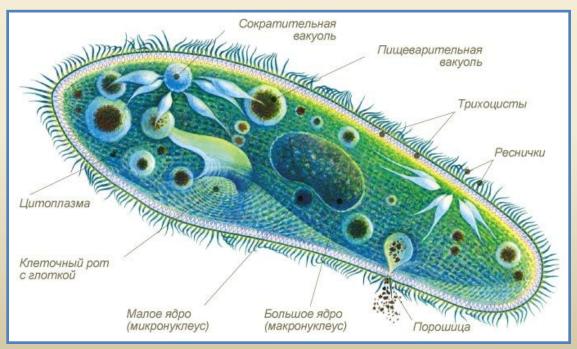


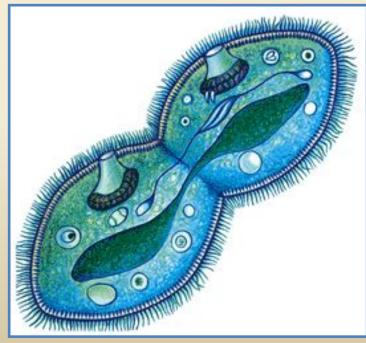

Питание. Захват пищи осуществляется с помощью клеточного рта и клеточной глотки, куда пищевые частицы направляются с помощью биения ресничек. Глотка открывается непосредственно в эндоплазму. Непереваренные остатки выбрасываются через порошицу.

Дыхание происходит через всю поверхность тела.

Выделение. Избыток воды удаляется с помощью двух сократительных вакуолей с приводящими канальцами, их содержимое поочередно изливается через выделительные поры.

При неблагоприятных условиях способны к инцистированию.

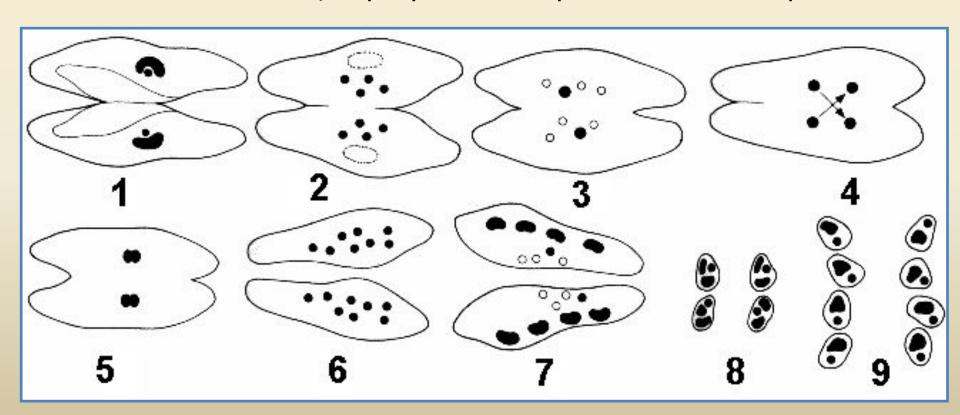


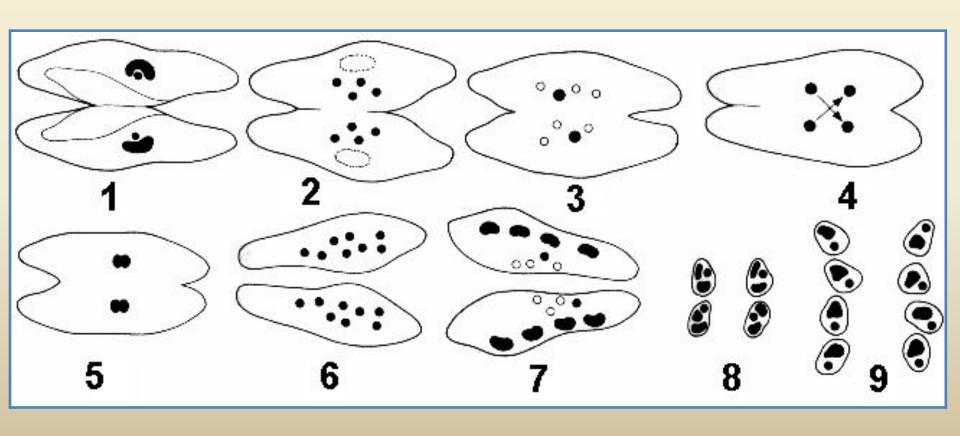

Строение:

- 1 цитостом;
- 2 клеточная глотка;
- 3 пищеварительная вакуоль;
- 4 порошица;
- 5 макронуклеус;
- 6 микронуклеус;
- 7 сократительная вакуоль;
- 8 приводящие каналы;
- 9 реснички;
- 10 пищеварительная вакуоль.

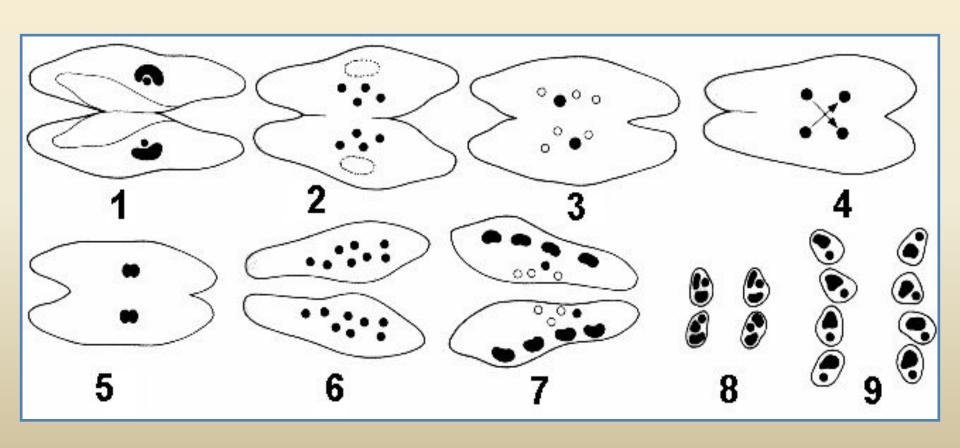
Бесполое размножение — поперечное митотическое деление, чередующееся с половым процессом — конъюгацией и половым размножением.

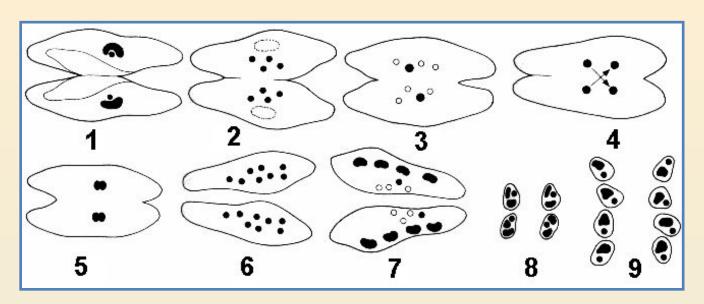
Следует помнить, что половое размножение сопровождается увеличением числа особей.




Конъюгация и половое размножение инфузорий туфелек происходит при неблагоприятных условиях.

Две инфузории соединяются друг с другом околоротовыми областями, в этом месте происходит разрушение пелликулы, и образуется цитоплазматический мостик, соединяющий обе инфузории.

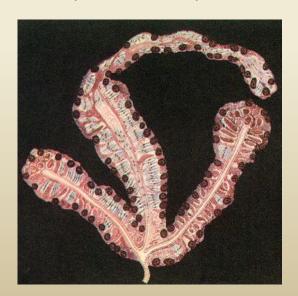

Затем макронуклеусы разрушаются, микронуклеусы претерпевают мейотическое деление, образуются четыре гаплоидных ядра.


Три ядра разрушаются, четвертое делится митотически. В это время в каждой инфузории по два гаплоидных ядра, женское (стационарное) ядро остается на месте, мужское мигрирует по цитоплазматическому мостику в другую инфузорию. После этого происходит слияние мужских и женских ядер. Конъюгация продолжается несколько часов, затем инфузории расходятся.

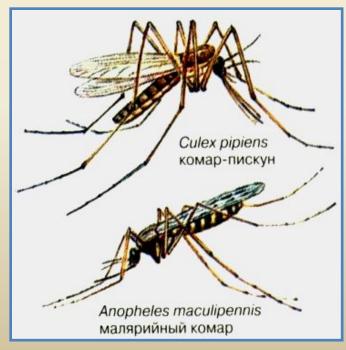
В каждом из эксконъюгантов диплоидное ядро претерпевает ряд митотических делений, происходит деление самих эксконъюгантов, в результате образуются 8 инфузорий, в каждой из которых один полиплоидный макронуклеус и один диплоидный микронуклеус.

Что происходит на каждом этапе:

- 1 конъюгация;
- 2 разрушение макронуклеусов, мейоз микронуклеусов;
- 3 разрушение трех микронуклеусов;
- 4 митоз и обмен мужскими ядрами;
- 5 слияние ядер;
- 6 три митоза, образование 4 микро- и 4 макронуклеусов;
- 7 разрушение трех микронуклеусов;
- 8, 9 деление эксконъюгантов на 2 особи с 2 макронуклеусами и микронуклеусом, затем каждая из 4 делится с митозом микронуклеуса, образуется 8 особей, макронуклеус становится полиплоидным;

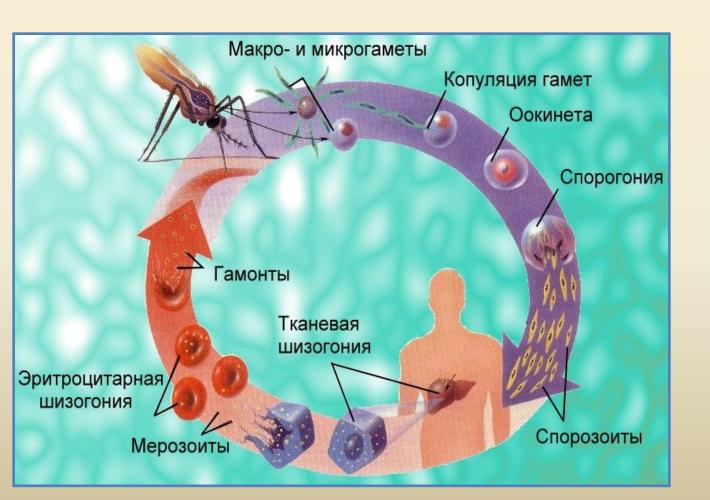

Тип Апикомплексы, малярийный плазмодий

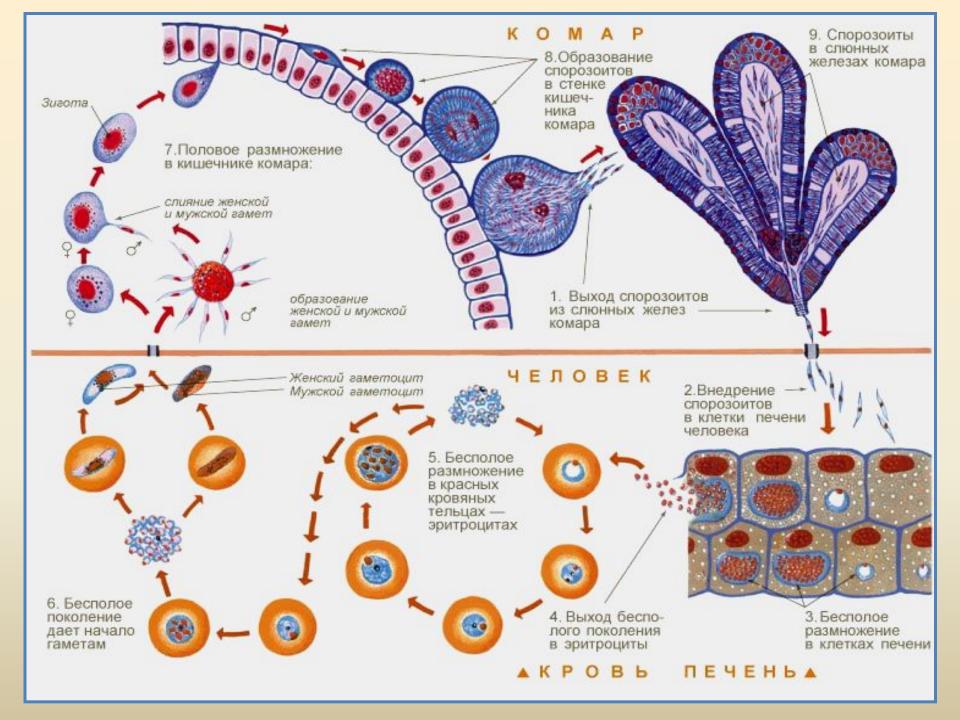
К типу относятся исключительно паразитические простейшие. В связи с паразитическим образом жизни происходит упрощение организации (исчезновение органоидов захвата и приема пищи, пищеварительных и сократительных вакуолей).


Происходит усложнение жизненного цикла — смена хозяев, чередование бесполого и полового размножения.

Представитель типа — малярийный плазмодий, вызывает у человека заболевание малярией. Заражение происходит через укус малярийным комаром (рода Anopheles), который содержит возбудителя на стадии спорозоитов.

Спорозоиты малярийных плазмодиев в слюнных железах





Спорозоиты — тонкие, червеобразные клетки, с током крови попадают в клетки печени, где превращаются в шизонтов, которые размножаются множественным делением — *шизогонией*. При этом ядро многократно делится, затем из каждой клетки образуется большое количество дочерних клеток.

Образовавшиеся *мерозоиты* выходят из клеток печени и внедряются в эритроциты. Здесь они питаются, затем вновь происходит <u>шизогония</u>.

Таким образом, различают две формы шизогонии — в клетках печени и в эритроцитах.

В результате эритроцитарной шизогонии образуются 10—20 мерозоитов, которые разрушают эритроцит, выходят в кровь и заражают следующие эритроциты. Цикличность приступов малярии обусловлена цикличностью выходов мерозоитов и продуктов их метаболизма из эритроцитов в плазму крови.

После нескольких циклов шизогонии в эритроцитах образуются *гамонты*, которые в организме комара превратятся в макрогаметы и микрогаметы. Когда гамонты попадают в желудок комара, они превращаются в гаметы, происходит копуляция, слияние гамет. Зигота подвижна и называется *оокинета*. Оокинета мигрирует через стенку желудка комара и превращается в *ооцисту*.

Ядро ооцисты многократно делится, и ооциста распадается на огромное количество спорозоитов — до 10000. Этот процесс называется спорозония. Спорозоиты мигрируют в слюнные железы комара. Таким образом, в жизненном цикле малярийного плазмодия человек является промежуточным хозяином, а малярийный комар — окончательным.

ТИП ГУБКИ

- 1. Многоклеточность
- 2. Образование первых слоев тела эктодермы и энтодермы
- 3. Возникновение радиальной симметрии как способа внутренней упорядоченности
- 4. Дифференцировка клеток на ряд клеточных типов
- 5. Появление специализированных для размножения половых клеток

ТИП КИШЕЧНОПОЛОСТНЫЕ

- 1. Многоклеточность
- 2. Образование первых тканей экто- и энтодермы
- 3. Лучевая симметрия тела
- 4. Дифференцировка клеток на ряд специализированных клеточных типов
- 5. Возникновение нервной системы, состоящей из отдельных клеток, соединенных между собой отростками
- 6. Появление частично внутриполостного пищеварения

- 1. Возникновение третьего зародышевого листка мезодермы как источника формирования новых органов и систем. Особо важное место принадлежит мышечной системе (кожномускульный мешок), обусловившей активное перемещение по твердому субстрату и в будущем освоение многоклеточными суши
- 2. Дифференцировка клеток на большое количество функциональных типов
- 3. Билатеральная симметрия как форма усиления структурированности организма
- 4. Появление переднего конца тела с комплексом органов чувств: зрения, обоняния, осязания
- 5. Возникновение нервной системы, состоящей из боковых нервных стволов, соединенных между собой многочисленными перемычками, и концентрация нервных элементов на переднем конце тела
- 6. Образование пищеварительной системы, включающей передний и средний отделы, обеспечивающие полостное пищеварения
- 7. Появление выделительной системы, состоящей из отдельных клеток протонефридиев
- 8. Формирование постоянных половых желез и их придатков -

ТИП НЕМАТЕЛЬМИНТЫ

- 1. Образование первичной полости тела, которая заполнена жидкостью под давлением; жидкость выполняет роль гидроскелета и участвует в обмене веществ внутри организма
- 2. Прогрессивное развитие нервной системы, выразившееся в слиянии нервных стволов и формировании окологлоточного нервного кольца
- 3. Появление задней кишки и заднепроходного отверстия, что позволило превратить процесс пищеварения из циклического в непрерывный
- 4. Разделение мышечного слоя на продольные тяжи, т.е. разделение органов, способствующее эффективности движения (кожно-мускульного мешка нет)
- 5. Раздельнополость, обеспечивающая генетическое разнообразие потомства

ТИП КОЛЬЧАТЫЕ ЧЕРВИ

- 1. Появление вторичной полости тела целома, имеющего собственные стенки
- 2. Расчленение тела на сегменты с повторяющимися структурами внутренних органов
- 3. Прогрессивное развитие нервной системы: значительное увеличение мозгового ганглия, образование окологлоточного нервного кольца и брюшной нервной цепочки в результате сближения боковых нервных стволов и формирования нервных узлов в каждом сегменте
- 4. Появление кровеносной системы (замкнутой у полихет и олигохет, незамкнутая у пиявок и дыхательной системы кожных жабр, существенно повысивших интенсивность обмена веществ
- 5. Усложнение пищеварительной системы возникновение задней эктодермальной кишки и дифференцировка средней кишки на отделы, что придает пищеварению непрерывный характер
- 6. Возникновение конечностей параподий Образование многоклеточной выделительной системы

- 1. Слияние сегментов в отделы тела и концентрация органов, повышающая интенсивность выполняемых ими функций
- 2. Прогрессивное развитие нервной системы образование нервных узлов в отделах тела
- 3. Появление сердца, увеличивающего скорость кровообращения
- 4. Появление пищеварительных желез, обеспечивающих полную утилизацию пищи

ТИП ИГЛОКОЖИЕ

1. Изменение полярности тела – появление вторичного рта на месте анального отверстия у предков 2. Развитие из участков целома амбулакральной системы – воднососудистой системы, служащей для движения, дыхания, выделения и других функций 3. Появление поперечно-полосатых

мышц и мышечных пучков

ТИП ЧЛЕНИСТОНОГИЕ

- 1. Концентрация органов за счет слияния сегментов в отделы тела
- 2. Появление членистых конечностей
- 3. Возникновение поперечно-полосатой мускулатуры, заменившей гладкую соматическую, и формирование мышечных пучков, обеспечивающих разнообразие и высокую точность движений
- 4. Появление наружного скелета хитинового покрова как места для прикрепления мышц
- 5. Прогрессивное развитие пищеварительной системы
- 6. Существенное усложнение нервной системы и органов чувств
- 7. Появление крыльев (у насекомых)

Система беспозвоночных Царство Одноклеточные – Protozoa Тип Саркомастигофоры – Sarcomastigophora

Класс Корненожки – Rhizopoda

Представители: Amoeba proteus (амеба протей), Entamoeba histolytica (дизентерийная амеба), Arcella (арцелла), Difflugia (диффлюгия)

Тип Солнечники – Heliozoa

Представители: Actinospaerium (актиносфериум)

Тип Фораминиферы – Foraminifera

Представители: Globygerina (глобигерина)

Тип Лучевики, или радиолярии – Radiolaria

Представители: Lithoptera (литоптера),

Spymellaria (спумеллярия)

Тип Эвгленозои – Euglenozoa

Класс Эвгленовые – Euglenoidea

Представители: Euglena viridis (эвглена зеленая)

Класс Кинетопластиды – Kinetoplastidea

Представители: Bodo (бодо), Cryptobia (криптобия),

Phytomonas (фитомонас), Trypanosoma (трипаносома)

Тип Инфузории – Ciliophora

Класс Спиральноресничные – Spirotrichia

Представители: Stentor (трубач),

Stylonichia (стилонихия)

Класс Сосущие – Suctoria

Представители: Paracineta (паракинета)

Класс Кругоресничные – Peritrichia

Представители: Vorticella (сувойка)

Тип Апикомплекса – Apicomplexa

Класс Кокцидии - Coccidia

Представители: Eumeria magna (эймерия),

Toxoplasma gondii (токсоплазма)

Класс Гематозои – Haeatozoea

Представители: Plasmodium (плазмодий)

Класс Грегарины - Gregarinea

Представители: Corycella armata (корицелла),

Gregarina longa (грегарина удлиненная)

Тип Микроспоридии – Microsporidia

Представители: Glugea anomala (глюгея)

Тип Миксоспоридии – Microsporidia

Представители: Leptotheca agilis (лептотека)

Тип Опалины – Opalinata

Класс Опалины – Opalinea

Представители: Opalina ranarum (опалина лягушачья)

Тип Плоские, или пластинчатые - Placozoa

Представители: Trichoplax (трихоплакс)

Царство Животные – Animalia

Тип Губки – Spongia (Porifera)

Класс Известковые губки – Calcarea

Представители: Ascandra (аскандра)

Класс Стеклянные, или шестилучевые губки –

Hyalospongiae

Представители: Euplectella aspergillum (эуплектелла),

Hyalonema (гиалонема)

Класс Обыкновенные губки – Demospongiae

Отряд Четырехлучевые губки – Tetraxonida

Представители: Tethya aurantium (губка-апельсин),

Poterion neptuni (кубок Нептуна)

Отряд Кремнероговые губки – Cornacuspongiae

Представители: Spongia officinalis (туалетная губка),

Spongilla (бодяга), Baicalospongia (байкальская губка)

Тип Кишечнополостные – Coelenterata (Cnidaria) Класс Гидроидные - Hydrozoa Отряд Гидры – Hydrida Представители: Hydra oligastis (гидра длинностебельчатая), Hydra viridis (гидра зеленая) Отряд Морские гидроидные полипы – Leptolida Представители: Obelia geniculata (обелия) Отряд Трахимедузы - Trachillida Представители: Aglantha (агланта), Physalia (сифонофора физалия), Velella (парусник) Класс Сцифоидные - Scyphozoa Представители: Aurelia aurita (ушастая медуза), Rhizostoma pulmo (корнерот), Lucernaria (люцернария)

Класс Коралловые полипы – Anthozoa
Подкласс Шестилучевые кораллы – Hexacorallia
Отряд Актинии, или морские анемоны – Actiniaria
Представители: Actinia equine (актиния конская)

Отряд Цериантарии – Ceriantharia

Представители: Cerianthus (цериантус)

Отряд Шипастые кораллы – Antipantharia

Представители: Polithoa (политоа)

Отряд Мадреподовые кораллы – Madreporaria

Представители: Fungia (грибовидный коралл),

Lophelia (лофелия)

Подкласс Восьмилучевые кораллы – Octocorallia

Отряд Альционарии – Alcyonaceae

Представители: Alcyonaria (альционария)

Отряд Горгонарии – Gorgonaceae

Представители: Gorgonaria (горгонария)

Отряд Морские перья – Pennatulaceae

Представители: Pennatula (пеннатула)

Тип Гребневики – Ctenophora

Представители: Beroe cucumis (морской огурец)

тип тілоские черви – Platneimintnes

Класс Ресничные черви – Turbellaria

Отряд Планарии – Tricladida

Представители: Planaria torva (планария бурая), Dendrocoelum lacteum (планария белая)

Класс Моногенетические сосальщики – Monogenea Отряд Monopisthocotylea

Представители: Polystoma integgerimim (лягушачий многоуст)

Отряд Polyopisthocotylea

Представители: Diplozoon paradoxum (спайник парадоксальный)

Класс Дигенетические сосальщики - Digenea

Представители: Dicrocoelum dendriticum (ланцетовидная двуустка), Fasciola hepatica (печеночная двуустка)

Класс Ленточные черви – Cestoda

Отряд Цепни – Cyclophillydea

Представители: Taenia solium (свиной цепень),

Отряд Псевдофиллидеи – Pseudophillidea

Представители: Diphyllobothrium latus (лентец широкий)

Тип Немательминты – Nemathelminthes

Класс Брюхоресничные – Gastrotricha

Представители: Turbanella (турбанелла)

Класс Круглые черви – Nematoda

Представители: Mononchus (мононх),

Ascaris lumbricoides (человеческая аскарида)

Класс Коловратки – Rotatoria

Представители: Ptygura (птигура), Keratella (керателла)

Класс Киноринхи – Kinorhyncha

Представители: Echinoderes (эхинодерес)

Класс Волосатики – Nemathomorpha

Представители: Gordius (волосатик)

Класс Скребни – Acanthocephala

Представители: Acanthocephalus (скребень)

Тип Немертины – Nemertini

Представители: Cerebratulum (церебратулюм)

Тип Кольчатые черви – Annelida

Класс Многощетинковые – Polychaeta

Представители: Nereis virens (нереида),

Arenicola (пескожил)

Класс Малощетинковые – Olgochaeta

Представители: Lumbricus terrestris (дождевой червь),

Tubifex (трубочник), Eisenia foetida (навозный червь)

Класс Пиявки – Hirudinea

Представители: Hirudo medicinalis (медицинская пиявка),

Limnotracheobdella cinensis (рыбья пиявка),

Archeobdellia esmonti (каспийская пиявка)

Тип Мшанки – Bryozoa

Представители: Cristatella mucedo (пресноводная мшанка)

Тип Плеченогие – Brachiopoda

Представители: Lingula (лингула)

Тип Моллюски – Mollusca Класс Брюхоногие моллюски – Gastropoda Подкласс Переднежаберные – Prosobranchia

Представители: Viviparus contectus (лужанка), Cassis cornuta (улитка-шлем), Aporrhais pespelicani (пеликанья нога), Tonna (тонна), Conus textile (текстильный конус)

Подкласс Заднежаберные – Opisthobranchia

Представители: Actaeon (актеон), Umbrella meditheranea (улитка-зонтик), Gleba cordata (глеба)

Подкласс Легочные – Pulmonata

Представители: Helix pomatia (виноградная улитка), Succinea putris (янтарка), Lymnaea stagnalis (обыкновенный прудовик), Planorbarius corneus (роговидная катушка)

Класс Двустворчатые – Bivalvia

Представители: Anodonta (беззубка), Unuo (перловица), Ostrea (устрица), Mytilus (мидия), Patinopecten (гребешок), Sphaerium (шаровка), Cerastoderma (сердцевидка), Dreissena (дрейссена)

Класс Лопатоногие – Scaphopoda

Представители: Siphonodentalium (морской зуб)

Класс Головоногие – Cephalopoda

Представители: Lycoteuthis diadema (чудесная лампа), Chiroteuthis (кальмар), Ammonithus (аммонит), Belemnithus (белемнит), Rossia (каракатица),

Octopus (осьминог), Argonauta (аргонавт), Loligo vulgaris (обыкновенный лолиго)

Тип Иглокожие – Echinodermata

Класс Морские лилии (Crinoidea)

Представители: Rhizocrinus Iofotensis (лофотенский ризокринус), Leptometra (лептометра)

Класс Морские огурцы – Holothurioidea

Представители: Stereoderma lubrica (гладкий морской огурец), Synapta maculata (пятнистая синапта)

Класс Морские ежи – Echinoidea

Подкласс Правильные морские ежи – Regularia

Представители: Hygrosoma (мягкий еж),

Phylacanthus (копьеносный еж)

Подкласс Неправильные морские ежи – Irregularia

Представители: Echinocardium cordatum (настоящий сердцевидный еж), Aeropsis fulva (яйцевидный морской еж)

Класс Морские звезды – Asteroidea

Представители: Henricia sanguinolenta (кровяная звезда)

Класс Офиуры – Ophiuroidea

Представители: Gorgonocephalus caryi (голова горгоны)