СИБИРСКОЕ ОТДЕЛЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК Институт цитологии и генетики

Прохорович Мария Александровна

Хромосомные аномалии в эмбриональных стволовых клетках человека hESM01-04

Научный руководитель д. б. н. Рубцов Николай Борисович

Новосибирск – 2008

Слайд 2 из 17

Цель работы:

оценить стабильность кариотипа эмбриональных стволовых клеток (ЭСК) человека в процессе культивирования и определить характеристики, по которым ЭСК с выявленными хромосомными перестройками отличаются от клеток исходных линий.

Задачи:

 провести цитогенетический анализ эмбриональных стволовых клеток (ЭСК) человека четырёх линий – hESM01, hESM02, hESM03 и hESM04 – в процессе культивирования;

2) провести молекулярно-цитогенетический анализ состава и организации выявленных перестроенных хромосом;

3) получить и охарактеризовать дифференцированные клетки из ЭСК с нормальным кариотипом, а также из ЭСК, несущих выявленные аномальные хромосомы;

4) провести сравнительный анализ характеристик ЭСК исходных линий hESM01-04 и ЭСК, несущих аномальные хромосомы;

5) разработать метод одновременной визуализации и идентификации хромосомных территорий перестроенной хромосомы и её нормального гомолога в трёхмерном пространстве интерфазного ядра ЭСК, несущих выявленные аномальные хромосомы;

6)провести оценку влияния хромосомных перестроек на положение хромосом в интерфазных ядрах ЭСК, несущих выявленные аномальные хромосомы.

Общий вид колонии hESM01

Фибробластоподобные производные клеток hESM01

Результаты иммуноокрашивания дифференцированных клеток с помощью антител против CD105 (а), пролилгидроксилаты (б); ядра окрашены DAPI – синий цвет.

Сублиния hESM01r18. 46, XX, r(18)

Сублиния hESM03der9. 46, XX, del(4),der(9)

б

Иммуноокрашивание клеток hESM01r18. На фотографиях «а» и «б» представлены фрагменты колоний. а – Tra-1-60 – красный сигнал, ядра окрашены DAPI – синий цвет; б – OCT4 – зелёный сигнал.

Слайд 6 из 17

Реорганизация хромосомы 18 в клетках сублинии ESM01r18

FISH теломерной ДНК пробы с хромосомами клеток сублинии ESM01r18

FISH микродиссекционной ДНК пробы der(18) с хромосомами клеток сублинии hESM01r18

Слайд 7 из 17

Реорганизация хромосомы 18 в клетках сублинии ESM01r18

FISH микродиссекционной ДНК пробы der(18) с метафазными хромосомами лимфоцитов взрослого человека с нормальным кариотипом

Слайд 8 из 17

Реорганизация хромосомы 18 в клетках сублинии hESM01r18

FISH микродиссекционной ДНК пробы der(18) с хромосомами клеток сублинии hESM01r18

Реорганизация хромосомы 4 в клетках сублинии hESM03der9

FISH микродиссекционной комбинированной ДНК пробы del(4)

a

- a с хромосомами клеток сублинии hESM03der9;
- <mark>б с хромосомами лимфоцитов</mark> здорового донора (фрагмент пластинки).

б

Реорганизация хромосомы 9 в клетках сублинии hESM03der9

Схема микродиссекции нормальной хромосомы 9 и der(9) для получения хромосомоспецифичных проб WCP9 и WCPder(9), а также районоспецифичных проб PCPder(9)-р, PCPder(9)-1, PCPder(9)-2 и центромерной пробы PCPC

Реорганизация хромосомы 9 в клетках сублинии hESM03der9

FISH хромосомоспецифичной WCPder(9) (красный цвет) и прицентромерной PCP9C (жёлтый цвет) микродиссекционных ДНК проб с хромосомами клеток сублинии hESM03der9.

Визуализация и идентификация хромосомных территорий хромосомы 18 и её деривата

FISH с хромосомами клеток сублинии hESM01r18 ДНК пробы, приготовленной на базе клонированного фрагмента ДНК из района делеции.

Совместная 3D FISH ДНК пробы, маркирующей нормальный гомолог хромосомы 18, и хромосомоспецифичной пробы WCP18, окрашивающей хромосомные территории хромосомы 18 и её деривата. Ядра окрашены DAPI – синий цвет.

Оптические срезы двух ядер (три проекции).

Трёхмерная реконструкция хромосомных территорий хромосом 18 и r18 в ядрах клеток hESM01r18

Совместная 3D FISH ДНК пробы, маркирующей нормальный гомолог хромосомы 18, и хромосомоспецифичной пробы WCP18, окраиивающей хромосомные территории хромосомы 18 и её деривата. Ядра окрашены DAPI – синий цвет.

<mark>Локализация хромосомных территорий хромосом</mark> 18 и r(18) в клетках сублинии hESM01r18

Пять различных вариантов расположения хромосомной территории в ядре

1. Хромосомная территории лежит в периферической области ядра с трёх сторон.

 Хромосомная территории лежит в периферической области ядра с двух сторон.

3. Хромосомная территория касается ядрышка и лежит в периферической области ядра.

4. Хромосомная территория касается ядрышка.

5. Хромосомная территория касается двух ядрышек.

Зелёным цветом обозначены хромосомные территории Красным цветом обозначены ядрышки

локализация	1	2	3	4	5
хромосомная территория					
хромосома 18 (нормальный гомолог)	10	19	56	2	3
хромосома r(18) (кольцевой дериват)	16	35	34	5	0

3D реконструкция хромосомы 9 и её деривата в пространстве интерфазного ядра клетки сублинии hESM03der9

<mark>3D FISH хромосомоспецифичной WCPder(9) (зелёный цвет) и прицентромерной PCP9C (красный цвет) ДНК проб с ядрами ESM03der9.</mark>

Выводы

1) Получены две сублинии ЭСК, отягощённые хромосомными перестройками, в то же время показано, что при проведении регулярного мониторинга состояния кариотипа возможно проведение длительного культивирования клеток hESM01-04, не сопровождающееся тотальной дестабилизацией кариотипа.

- Детально охарактеризованы выявленные аномальные хромосомы, являвшиеся производными хромосом 4, 9 и 18, с помощью полученного комплекта микродиссекционных проб.
- Показано, что, несмотря на сохранение «маркёров плюрипотентности», способности к дифференцировке ЭСК, отягощённых выявленными хромосомными аномалиями, снижены по сравнению с клетками исходных линий hESM01-04.

Выводы

4) Разработан метод одновременной визуализации и идентификации хромосомных территорий хромосомы 18 и её деривата в клетках hESM01r18, хромосомы 9 и её деривата в клетках hESM03der9.

5) На примере хромосомных территорий хромосом r18 и её нормального гомолога показано, что хромосомная перестройка сопровождалась изменением локализации перестроенной хромосомы по сравнению с локализацией её нормального гомолога относительно периферической области ядра и ядрышек. На примере аномалии хромосомы 9 в клетках hESM03der9 и их дифференцированных производных показано, что дуплицированный район, содержащий последовательности, гомологичные прицентромерным повторам, локализуется предпочтительно в периферической области ядра, также как и прицентромерные районы хромосом 9 и её деривата.

Спасибо за внимание!

3D реконструкция хромосомы 9 и её деривата в пространстве интерфазного ядра клеток сублинии hESM03der9

хромосомоспецифичной WCPder(9) (зелёный цвет) и центромерной PCP9C (красный цвет) ДНК проб с ядрами hESM03der9.

Локализация трёх районов хромосомных территорий хромосом 9 и der(9) в клетках hESM03der9 и их дифференцированных производных

Обозначение районов хромосомы 9 и её деривата. 9N - прицентромерный район хромосомы 9, 9C – прицентромерный район хромосомы der(9), dup9 – дополнительный сигнал на хромосоме der(9). Хромосомы окрашены красным, сигналы жёлтым.

Один из вариантов локализации районов dup9, 9С и 9N в ядрах клеток hESM03der9 и в ядрах дифференцированных клеток, полученных на основе hESM03der9.

локализация района	Касается ядрышка и не лежит в периферической области ядра			
район	dup9	9C	9N	
в ядрах клеток hESM03der9	18 из 97	17 из 97	13 из 97	
в ядрах дифференцированных клеток, полученных на основе hESM03der9	2 из 87	0 из 87	0 из 87	

Варианты локализации части хромосомной территории относительно границы ядра и ядрышка. (С 1) – одной стороной лежит в периферической области ядра; (С 2) – двумя сторонами чежит в периферической области

(С 2) – двумя сторонами лежит в периферической области ядра;

(C nu) – касается ядрышка,

(С 1 + nu) – одной стороной касается ядрышка, другая лежит в периферической области ядра;

0 - не касается ядрышка и не лежит в периферической области ядра.

Зелёным обозначены варианты локализации части хромосомной территории, красным – ядрышки.

Экспрессия специфических маркёров, выявленная с помощью моноклональных антител

Культура клеток. Линия hESM01

Срезы эмбриоидных телец. Линия hESM03

Сравнение свойств клеток сублиний

hESM01 u hESM01r18

линия	формирование эмбриоидных телец (ЭТ)	примечания	кариотип
hESM01	образуют обычные ЭТ, состоящие из тканеподобных структур разных типов		46,XX
hESM01r18	образуют ЭТ значительно медленнее. Большинство проанализированных ЭТ состоят из однослойного эпителия	легко переносят пересев мелкими (меньше 50 клеток) кластерами. Легко переносят заморозку.	46,XX,r(18)

Сравнение свойств клеток сублиний hESM01 и hESM01r18, hESM03 и hESM03der9

Слайд 5 из 17

Сублиния hESM01r18. 46, XX, r(18)

Сублиния hESM03der9. 46, XX, del(4),der(9)

1 8 8 🔁 21:40 EN <

😂 диссертация

🖉 Map Viewer -

💏 ПУСК