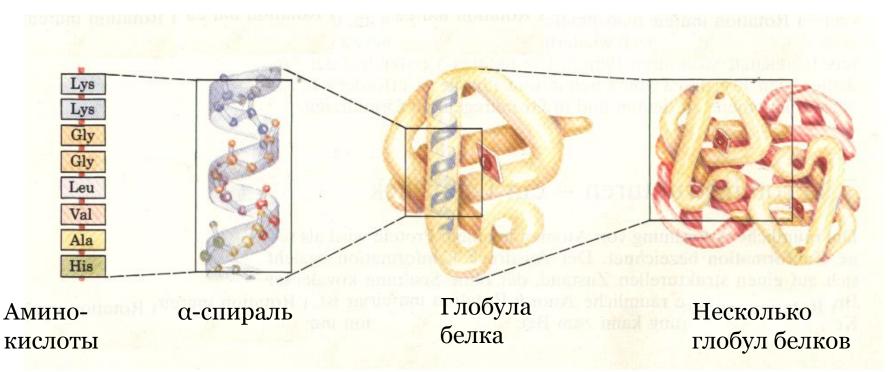
Белки II

1. Простые белки

- а) альбумины
- б) глобулины
- в) гистоны
- г) протамины
- д) глютелины
- е) проламины
- ж) склеропротеины.

2. Сложные белки


- а) нуклеопротеины
- б) хромопротеины
- в) фосфоропротеины
- г) гликопротеины
- д) липопротеины
- е) металлопротеины

Уровни организации белков

Первичная структура Вторичная **структура**

Третичная структура

Четвертичная структура

Простые белки – протеины.

Состоят только из аминокислот

- а) альбумины
- б) глобулины
- в) гистоны
- г) протамины
- д) глютелины
- е) проламины
- ж) протеиноиды (склеропротеины).

Наиболее распространенные

Альбумины

Молекулярная масса – 15-70 тыс.

ИЭТ – 4,7 (кислые)

Мало аминокислоты глицина, но много лейцина (12 – 15%).

Хорошо растворимы в воде (гидрофильны).

Осаждаются – при 100% насыщении раствора $(NH_4)_2SO_4$

При электрофорезе перемещаются первыми.

Разновидности: сывороточный, молочный, яичный, зерен пшеницы и др.

Высокая стойкость коллоидных растворов.

Среди белков крови имеет самую высокую концентрацию, но наименьшую молярную массу. Вносит основной вклад во внутрисосудистое коллоидно-осмотическое давление.

Образуется в клетках печени. Состоит из 610 аминокислот.

Транспортируют жирные кислоты, билирубин, лекарственные вещества.

Глобулины.

Масса – 100 тыс. и выше ИЭТ - 5,5 – 7,3

Глицина в 3 раза больше, чем у альбумина.

Нерастворимы в воде, но растворимы в слабых солевых растворах.

Осаждаются при полунасыщении раствора (NH₄)₂SO₄ Разновидности: сывороточный, яичный, молочный и др. При электрофорезе – идут вслед за альбуминами.

Три основные фракции: α,β и γ (антитела).

Наиболее разнообразная группа (только в крови до 20).

Менее гидрофильны, образуют менее стойкие коллоиды.

Взаимодействуют с липидами, углеводами, витаминами.

Соотношение альбуминов/глобулинов в крови - постоянно.

Гистоны.

Белки ядра.

Масса – 12 – 24 тыс.

ИЭТ – 8 – 9 (основные)

В природе соединены с ДНК

Участвуют в «упаковке» ДНК, регуляции генов.

Соотношение в хроматине ДНК : гистоны

1:1

Проламины.

Группа белков ядра.

Macca - 5000 - 10000

ИЭТ – около 12

Аргинина – до 75%

Нет триптофана и цестеина.

В природе соединены с ДНК.

Участвуют в регуляции активности генов.

Белки растительного происхождения

Глютелины.

Белки зерен.

ИЭТ - 6 -8

Пролина – 10 -15%

Глютаминовой кислоты ~30%

Растворим в 0,2 н щелочи.

Глютелин пшеници, оризеин риса.

Проламины.

Белки зерен злаков.

Масса – 28 -50 тыс.

ИЭТ – 4 -5

Глютаминовой кислоты -25 – 45%

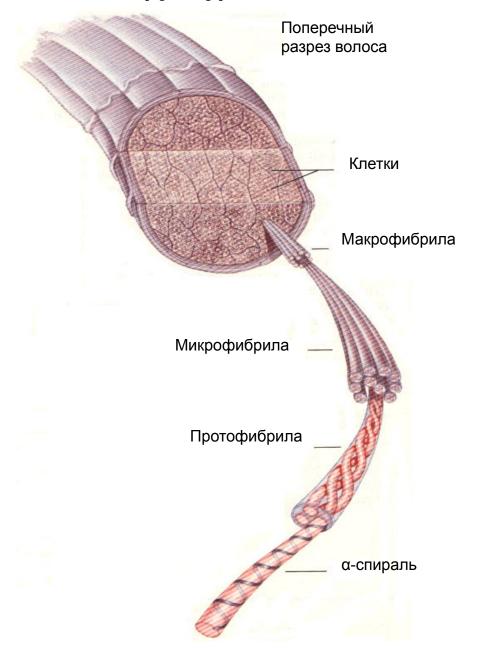
Растворимы в спирте.

Образуют клейковину зерна.

Протеиноиды (склеропротеины).

Белки опорных тканей (кости, хрящи, сухожилия, шерсть, копыта).

Растворимость – нерастворимы.


Много серосодержащих аминокислот.

Форма – фибриллярные.

Представители: коллаген, эластин, фиброин, кератин.

Высокая прочность и эластичность.

Структура волоса

Структура коллагеновых волокон

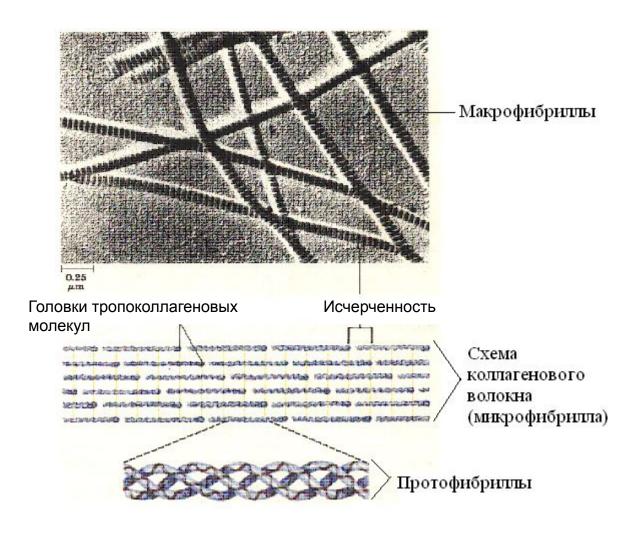
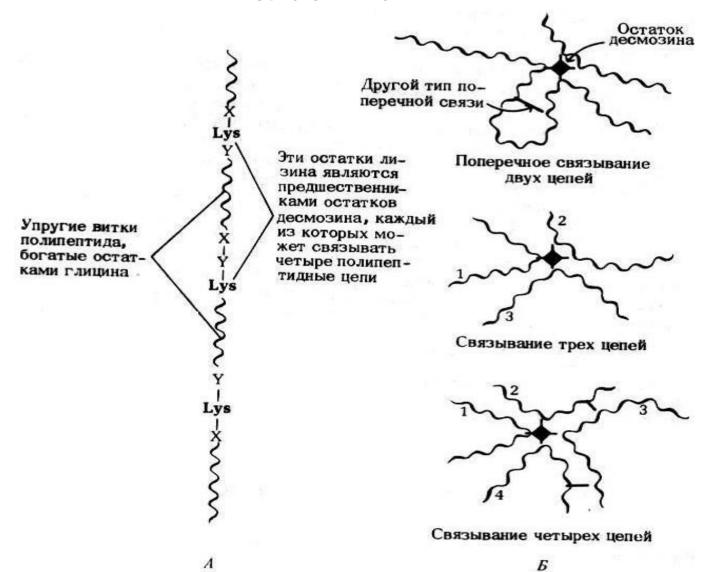


Схема объединения 3-х х-цепей тропоколлагеновых молекул

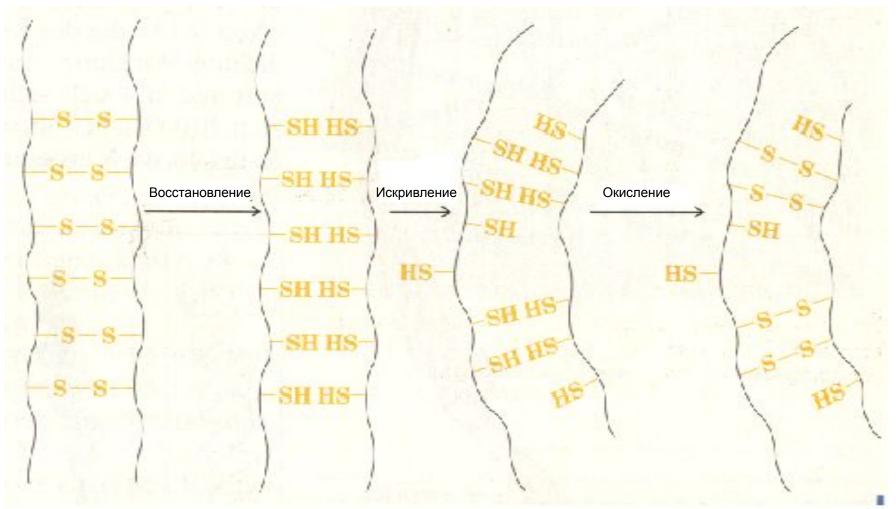
Строение коллагеновой фибриллы


Один из типов поперечных связей между параллельными цепями коллагена

цепь

(минус є-аминогруппа).

цень


Молекулы тропоэластина, из которых формируется сеть связанных между собой полипептидных цепей эластина

Вторичная структура и свойства фибриллярных белков

Структура	Характеристики	Примеры
α-Спираль с поперечными связями, образованными остатками цистина	Прочные не- растворимые защитные структуры различной твердости и гибкости	Волосы, перья, ногти
β-Конформа- ция	Мягкие гибкие нити	Шелк
Тройная кол- лагеновая спираль	Выдерживает высокую на- грузку без растяжения	Сухожи- лия, костный матрико
Цепи эластина с поперечны- ми связями, образо- ванными ос- татками де- смозина	Эластичное растяжение в двух измерениях	Связки

Схема завивки волос

Миозин и актин - два нитевидных белка сократительной системы

Сложные протеины.

нуклеопротеины хромопротеины фосфоропротеины гликопротеины липопротеины металлопротеины

Протеины

Нуклеиновые кислоты

гистоны
не гистоновые белки ДНК
протамины РНК

Хромопротеины.

Гемоглобин
Миоглобин
Цитохромы
Гемоцианин
Родопсин
Каталаза
Пероксидаза, другие

Хромопротеины.

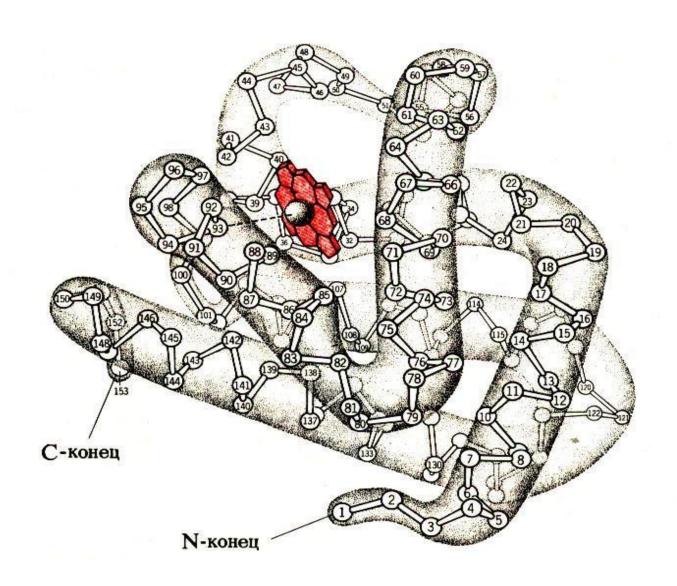
Протеин Небелковое вещество, обуславливающее окраску

гемоглобин

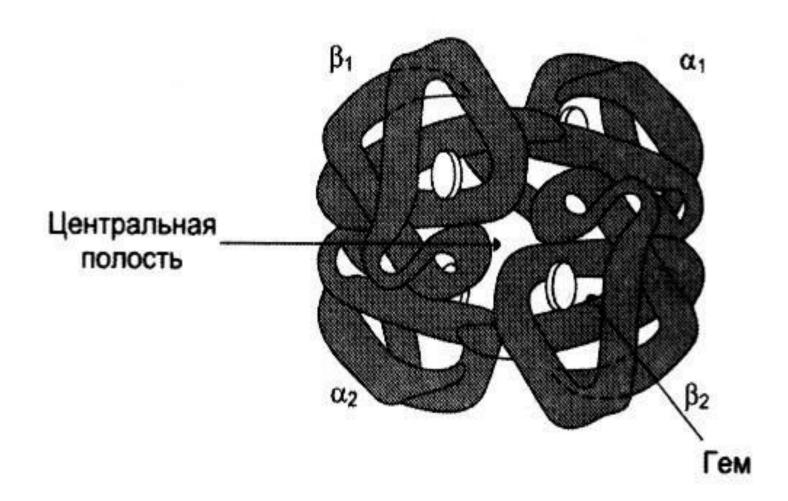
миоглобин

цитохромы

каталаза флавопротеины ретинопротеины

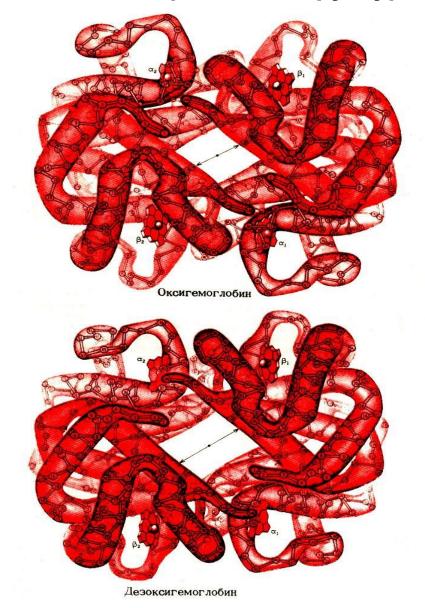

Миоглобин.

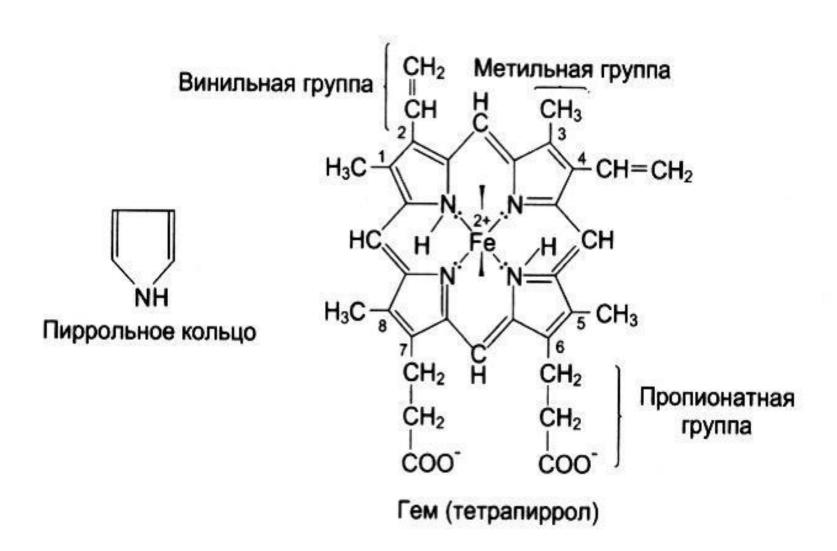
Содержится в красных мышцах.
Масса 17 тыс., 153 аминокислотных остатка + ГЕМ
75% образуют 8 правых α – спиралей.
Первичная структура определяет вторичную и третичную.


Цитохромоксидаза (цитохром a_3).

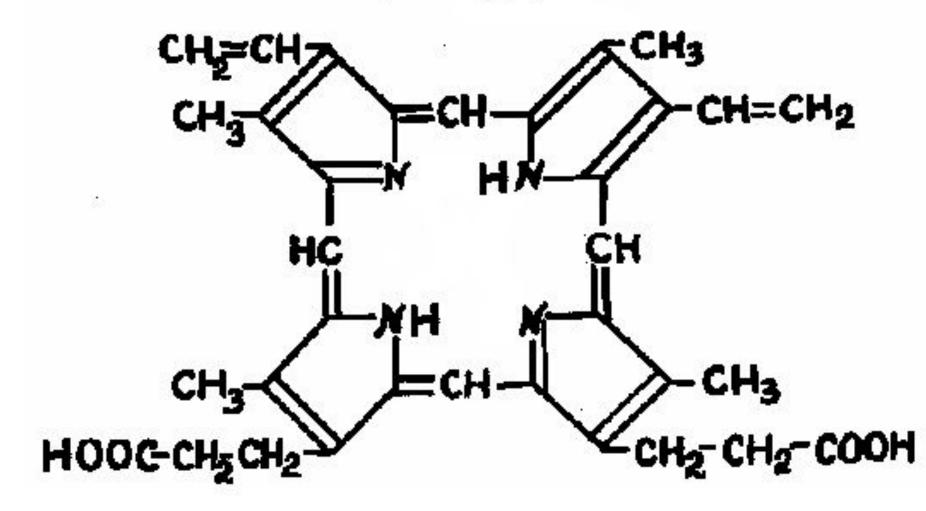
Конечный компонент дыхательной цепи. Переносит электроны на кислород. Масса – 12 -14 тыс. Содержит Fe и Cu.

Третичная структура миоглобина кашалота, установленная методом рентгеноструктурного анализа


Строение гемоглобина


Гемоглобин.

```
Macca – 67 - 70 тыс.
96 % белка и 4 % ГЕМа от молекулярной массы.
Состоит из 4 молекул глобина.
ГЕМ – метоллопорфириновый комплекс
   2 α цепи из 141 аминокислотного остатка
   2 β цепи из 146 аминокислотных остатков
HbO<sub>2</sub> - оксигемоглобин;
HbCO<sub>2</sub> - карбгемоглобин;
HbCO - карбоксигемоглобин;
HbF^{3+} - метгемоглобин;
HbA – нормальный гемоглобин взрослого человека α<sub>2</sub>β <sub>2</sub>
HbF – фетальный гемоглобин \alpha_2 \gamma_2
HbS – при серповидно – клеточной анемии α<sub>2</sub>S<sub>2</sub>
СО, присоединяется не к ГЕМу, а к NH, группе глобина.
```


Трехмерная структура окси- и дезоксигемоглобина, установленная методом рентгеноструктурного анализа

Строение гема, входящего в состав миоглобина и гемоглобина

протопорферин

Транспорт газов.

Гемоглобин связывает 4 молекулы кислорода.

Оксигенирование гемоглобина сопровождается значительными конформационными изменениями: α/β пара поворачиваются вокруг другой, что повышает сродство к O_2

Hb связывает ~ 15% CO_2 Остальной CO_2 в эритроцитах соединяется с H_2O .

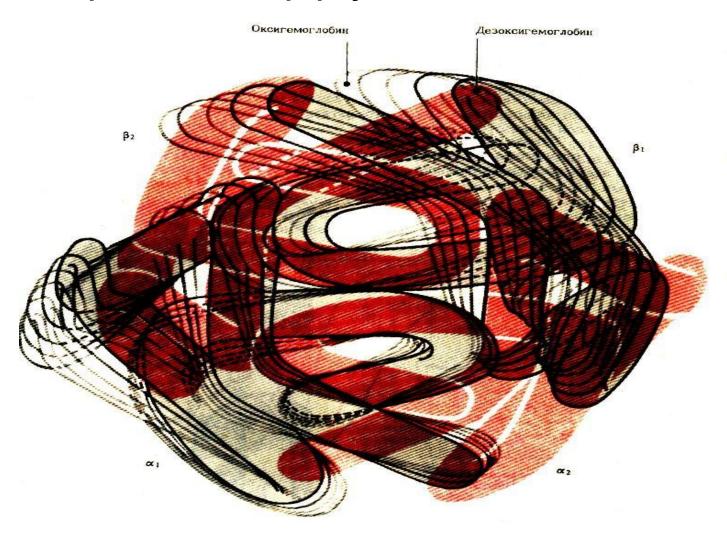
карбоангидразы

$$CO_2 + H_2O \rightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$$

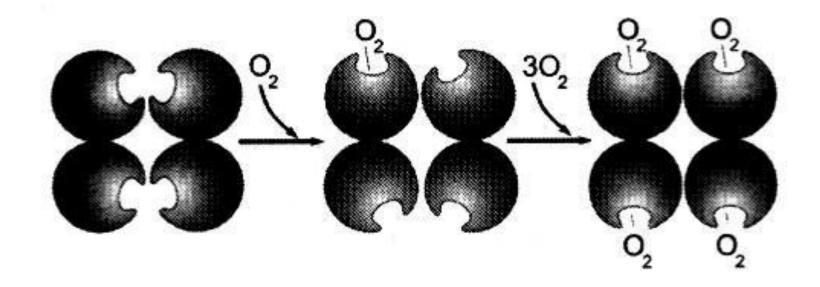
Сродство Hb к CO в 300 раз выше, чем к O₂, поэтому при концентрации CO в воздухе 0,1 % наблюдается отравление.

Соединения Hb

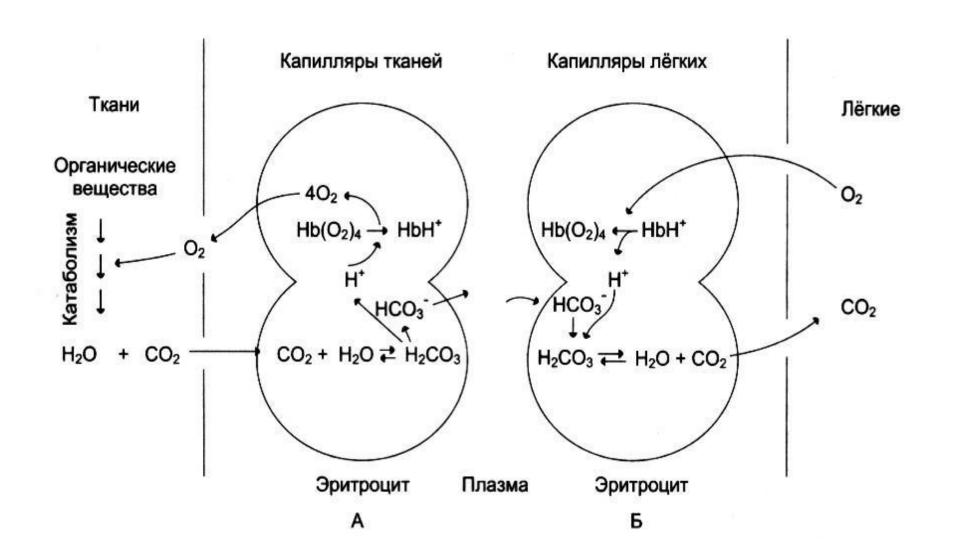
```
Нb(Fe^{2+})O_2 - оксигемоглобин;


Hb (Fe^{2+}) CO_2 - карбогемоглобин;

Hb (Fe^{2+}) CO - карбоксигемоглобин;


Hb (Fe^{3+}) OH - метгемоглобин;

Hb (Fe^{3+}) CN — циангемоглабин.
```


Схематическое изображение изменений в четвертичной структуре гемоглобина, обусловленных перемещением пары субъединиц α₁β₁ относительно неподвижной пары α₂β₂ в процессе освобождения кислорода из оксигемоглобина, переходящего в форму дезоксигемоглобина

Кооперативные изменения конформации протомеров гемоглобина при присоединении О₂

Перенос H⁺ и CO₂ с кровью. Эффект Бора

Фосфоропротеины.

Белок + остаток фосфорной кислоты.

Казеиноген
Ововиттелин желтка
Фосвитин
Пепсин и др. белки-ферменты
Ихтуллин икры

Гликопротеины.

Представители: Фибриноген, муцины, мукоиды, церулоплазмин, иммуноглобулины.

Белковая часть составляет 80 - 90% от м.м. молекул.

Олигосахаридная часть оказывает следующее влияние:

- 1) Изменяет физико-химические свойства
- 2) Защита от протеолиза
- 3) Определяет активность
- 4) Определяет транспортные свойства.

Функции гликопротеинов:

- *1.* Свертываемость протромбин, фибриноген.
- 2. Смазочные и защитные вещества муцины, слизистые секреты.
- з. Транспорт витаминов, липидов, минералов.
- 4. Иммунитет иммуноглобулины.
- 5. Ферменты холинэстераза, рибонуклеаза В.
- **6.** Клеточные контакты.
- 7. Рецепторы.
- 8. Гормоны гонадотропин, кортикотропин.
- 9. Повышает термостабильность.

Белок + гетерополисахарид, присоединен ковалентно.

Нейтральные – глобулины, фибриноген. Образуют нестойкие агрегаты.

Кислые - муцин, мукоид.

Муцины – основа слизей (слюна, желудочный и кишечный сок).

Мукоиды – белки синовиальной жидкости суставов, хрящей, сухожилий. Смазывающий и склеивающий эффект.

Распространены от бактерий до человека.

Образование гликопротеинов

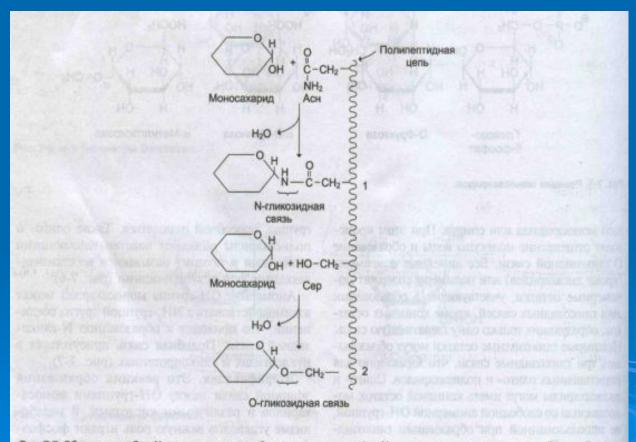
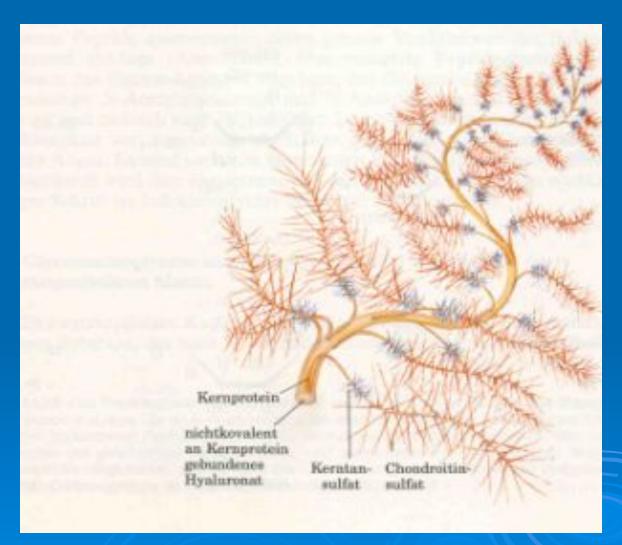
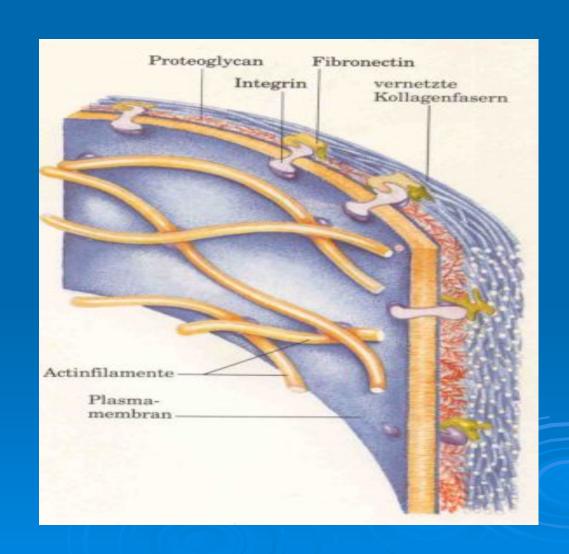


Рис. 7-7. Образование О- и N-гликозидных связей в гликопротеинах. 1 — N-гликозидная связь между амидной группой аспарагина и OH-группой моносахарида; 2 — О-гликозидная связь между OH-группой серина и OH-группой моносахарида.


Протеогликаны

Протеогликаны (мукополисахариды, гликозаминогликаны) — высокомолекулярные углеводно-белковые соединения. Образуют основную массу межклеточного матрикса соединительной ткани. Составляют до 30% сухой массы.


Линейные полимеры, построенные из повторяющихся дисахаридных единиц. Всегда связаны с белками.

Состоят из остатков глюкозамина (либо галактозамина) и остатков D-глюкуроновай (либо L-идуроновой) кислот. Например, гиалуроновая кислота (образование геля), хондроитинсульфат, дерматансульфат, кератинсульфат, гепарин и др.

Протеогликан

Строение экстрацеллюлярного матрикса

Металлопротеины (металлосвязывающие белки).

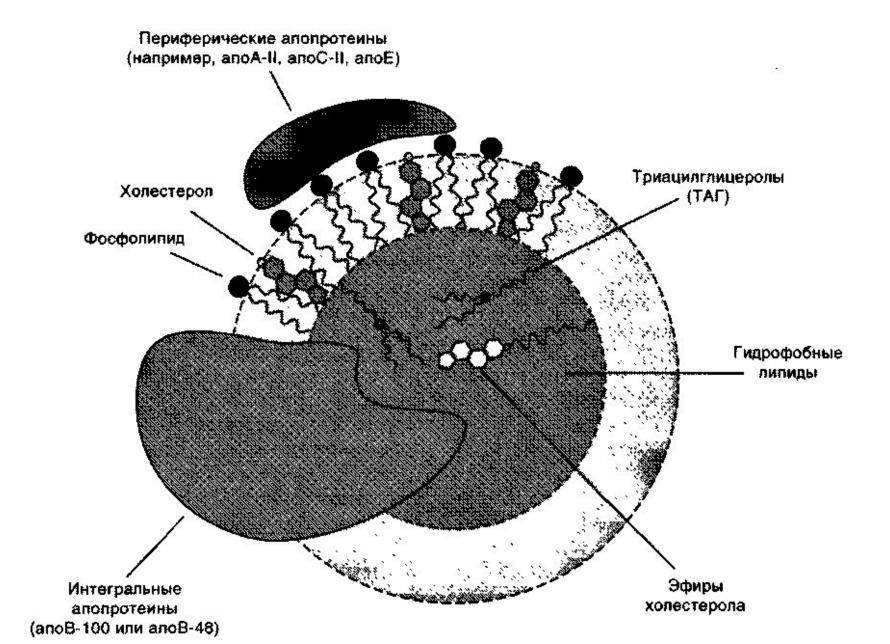
Белок + металл

Способ удержания и защиты от осадка.

Теряют токсичность. Обеспечивают ферментативную активность.

Церулоплазмин – белок +Cu

Карбоангидраза – белок + Zn


Лактатдегидрогеназа – белок + Zn

Ферритин – белок + Fe (23% - депо железа), масса 445000. 24

субъединицы. Связывает до 2000 остатков Fe на 1 молекулу.

Трансферин – белок + Fe³⁺ - резервный белок.

Липопротеины плазмы крови

Общая характеристика липопротеинов

Липиды в водной среде (а значит, и в крови) нерастворимы, поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками — липопротеины.

Все типы липопротеинов имеют сходное строение — гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов — фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные части — к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.

Апопротеины

Апопротеины выполняют несколько функций:

- формируют структуру липопротеинов;
- взаимодействуют с рецепторами на поверхности клеток и таким образом определяют, какими тканями будет захватываться данный тип липопротеинов;
- служат ферментами или активаторами ферментов, действующих на липопротеины.

Липопротеины

В организме синтезируются следующие типы липопротеинов: 1. хиломикроны (ХМ), 2. липопротеины очень низкой плотности (ЛПОНП), 3. липопротеины промежуточной плотности (ЛППП), 4. липопротеины низкой плотности (ЛПНП) и 5. липопротеины высокой плотности (ЛПВП).

Каждый из типов ЛП образуется в разных тканях и транспортирует определённые липиды. Например, ХМ транспортируют экзогенные (пищевые жиры) из кишечника в ткани, поэтому триацилглицеролы составляют до 85% массы этих частиц.

Свойства липопротеинов

ЛП хорошо растворимы в крови, не опалесцируют, так как имеют небольшой размер и отрицательный заряд на поверхности. Некоторые ЛП легко проходят через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам.

Большой размер XM не позволяет им проникать через стенки капилляров, поэтому из клеток кишечника они сначала попадают в лимфатическую систему и потом через главный грудной проток вливаются в кровь вместе с лимфой.

Гиперхиломикронемия, гипертриглицеронемия

После приёма пищи, содержащей жиры, развивается физиологическая гипертриглицеронемия и, соответственно, гиперхиломикронемия, которая может продолжаться до нескольких часов.

Скорость удаления ХМ из кровотока зависит от:

- активности ЛП-липазы;
- присутствия ЛПВП, поставляющих апопротеины C-II и Е для XM;
- активности переноса апоС-II и апоЕ на XM.

Генетические дефекты любого из белков, участвующих в метаболизме XM, приводят к развитию семейной гиперхиломикронемии — гиперлипопротеинемии типаl.

липопротеины — транспортные формы липидов					
Типы липо-протеинов	Хиломикроны (ХМ)	ЛПОНП	лппп	ЛПНП	лпвп
Состав, %					
Белки	2	10	11	22	50
ФЛ	3	18	23	21	27
XC	2	7	8	8	4
ЭХС	3	10	30	42	16
ТАГ	85	55	26	7	3
Функции	Транспорт липидов из клеток кишечника (экзогенных липидов)	Транспорт липидов, синтезируемых в печени (эндогенных липидов)	Промежуточная форма превращения ЛПОНП в ЛПНП под действием фермента ЛП-липазы	Транспорт холестерола в ткани	Удаление избытка холестерола из клеток и других липопротеинов. Донор апопротеинов А, С-П

Клетки печени

0,96-1,00

30-100

B-100

C-II

Е

Кровь (из ЛПОНП

1,00-1,06

21-100

B-100

и ЛППП)

Клетки печени —

1,06-1,21

7-15

А-І С-П Е

ЛПВП-пред-

шественники

Кровь

B-100 E

Примечания: ФЛ — фосфолипиды; ХС — холестерол; ЭХС — эфиры холестерола; ТАГ — триацилглицеролы. Функции апопротеинов • B-48 — основной белок XM,

Эпителий тонкого

0,92-0,98

Больше 120

B-48 C-II

Е

кишечника

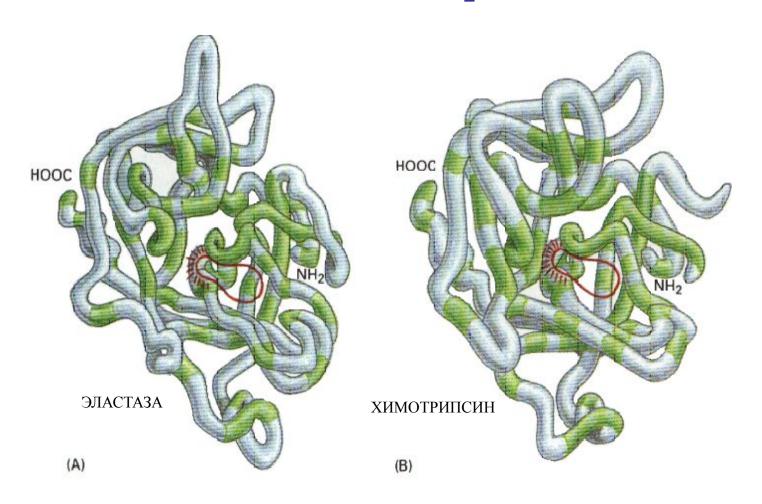
аполипопро-

Место образования

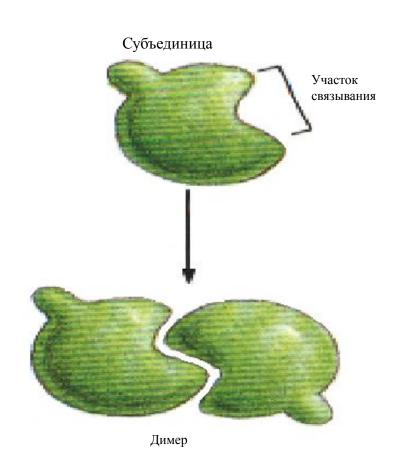
Плотность, г/мл

Основные

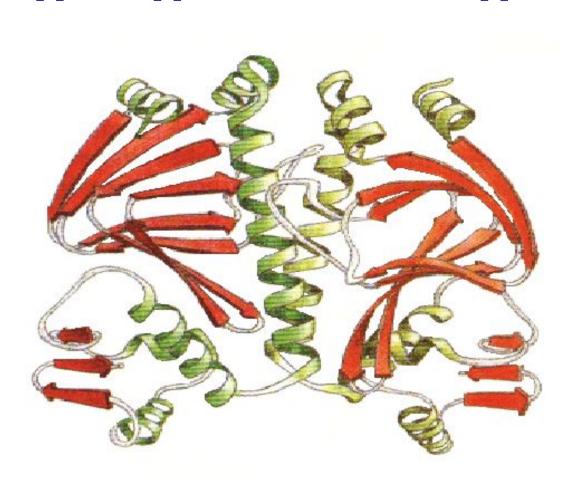
Диаметр частиц, нМ

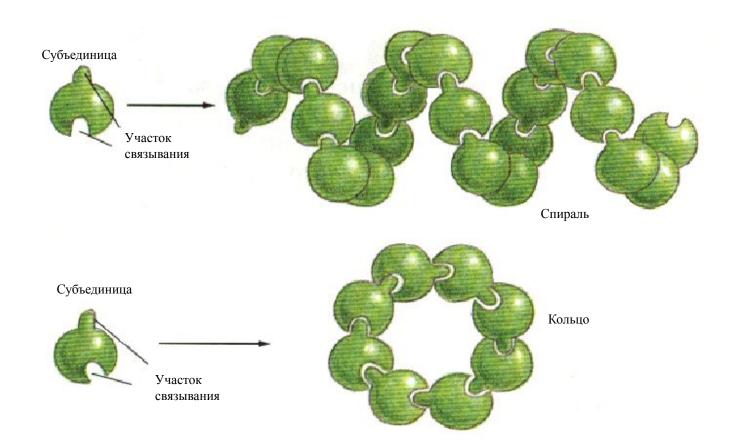

теины

[•] В-100 — основной белок ЛПОНП, ЛПНП, ЛППП, взаимодействует с рецепторами ЛПНП; • С-И — активатор ЛП-липазы, переносится с ЛПВП на ХМ и ЛПОНП в крови;

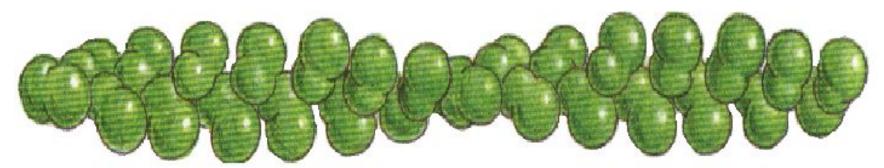

[•] Е — взаимодействует с рецепторами ЛПНП;

[•] А-І — активатор фермента лецитин:холестеролацилтрансферазы (ЛХАТ).

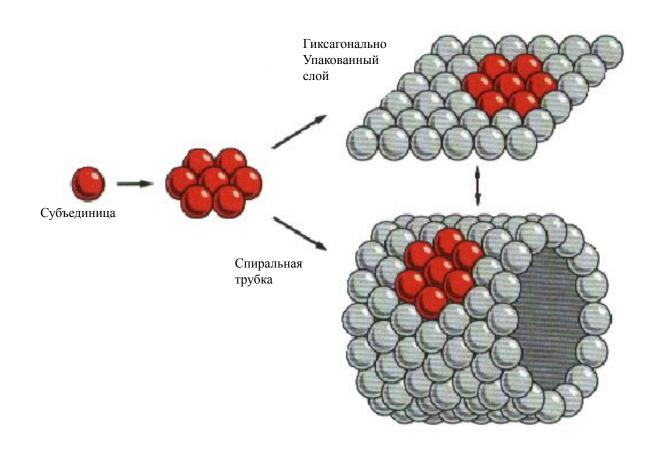

Сравнение пространственной структуры зластазы и химотрипсина


Образования димера из одинаковых белковых субъединиц

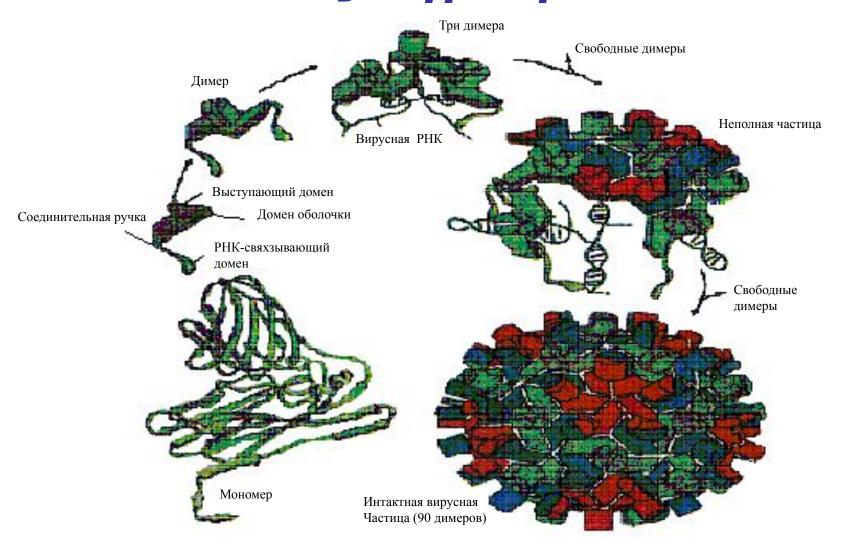
Ленточная модель димера, образованного из двух идентичных субъединиц



Одинаковые субъединицы формируют спираль или кольцо



Формирование спирали актина из субъединиц


Спираль актина

Формирование пространственных структур из субъединиц белка

Образование оболочки вируса из белковых субъединиц

