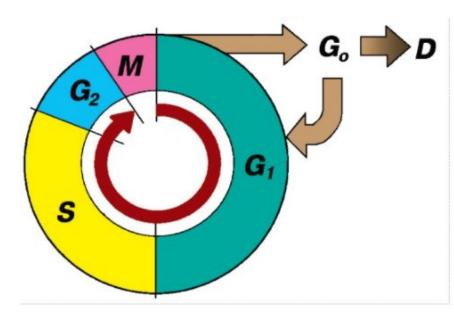
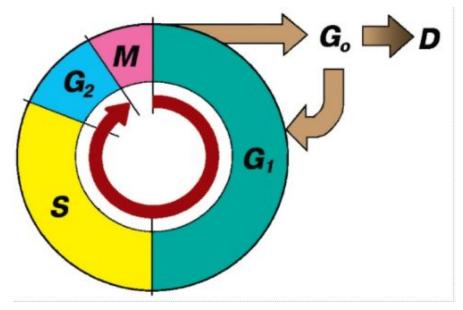
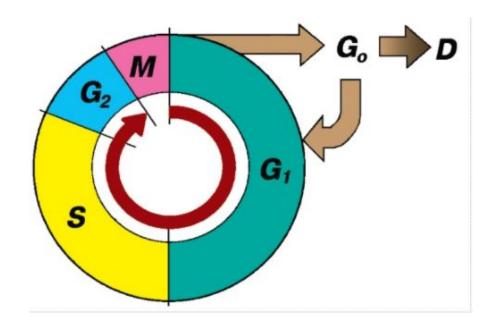

Лекция 5

Тема: Апоптоз. Некроз.

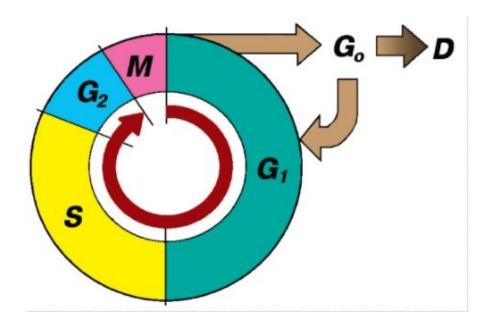
КЛЕТОЧНЫЙ ЦИКЛ

Период существования клетки с момента появления в процессе деления материнской клетки до ее собственного деления или гибели, называется клеточным циклом (митотический цикл).

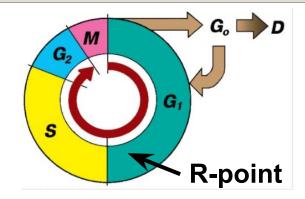




Схема клеточного цикла

1) период клеточного роста, называется интерфаза 2) период клеточного деления, называемый "фаза М " (от слова митоз).


В интерфазе выделяют: фазу G1 фазу S фазу G2.

Период G1 клетка подготавливается к синтезу ДНК. В ней активно синтезируются РНК, белки, ферменты, восстанавливаются органоиды, утраченные при делении. Это самый продолжительный период интерфазы длится 6-12 ч.



Синтетический период (-S) происходит самоудвоение молекул ДНК (редупликация). К концу этого периода каждая хромосома состоит из двух идентичных хроматид, соединенных в области центромеры. В ядро поступают белки, происходит удвоение центриолей.

Период G2 клетка осуществляет контроль за точностью произошедшей редупликации ДНК и исправляет обнаруженные сбои.

Фаза М включает две стадии: митоз и цитокинез.



В митозе 4 стадии: профаза, метафаза, анафаза, телофаза. Длительность митоза от 0,5 до 3 ч. Цитокинез – деление цитоплазмы.

Фаза G0, когда после завершения деления клетка не вступает в следующий клеточный цикл и длительное время остается в состоянии покоя.

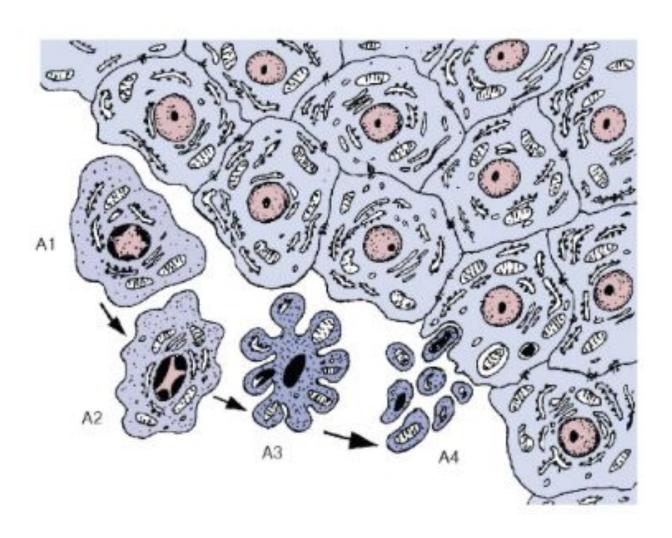
D – гибель клетки

Точка рестрикции, **R-point** - время в клеточном цикле, когда продвижение клетки к делению становится необратимым.

Старение клетки – это явление, когда клетка утрачивает способность делиться.

Гибель клетки – постепенный процесс:

- •вначале в клетке возникают обратимые повреждения, совместимые с жизнью;
- •затем повреждения становятся необратимыми, но некоторые функции клетки сохраняются;
- •наступает полное прекращение всех функций.


Гибель клетки может происходить двумя путями: некроза и апоптоза.

Апоптоз – это генетически запрограммированное саморазрушение клетки.

Играет большую роль в морфогенезе и является механизмом постоянного контроля размеров органов. При снижении апоптоза происходит накопление клеток (опухолевый рост).

□При увеличении апоптоза наблюдается прогрессивное уменьшение количества клеток в ткани – атрофия.

АПОПТОЗ

АПОПТОЗ

- 1. Клетка утрачивает связь с соседними клетками и отделяется от них.
- 2. Происходит уплотнение ядра (гетерохроматин в виде полулуний распределяется под кариолеммой); сжатие и уплотнение цитоплазмы, что приводит ко все более компактному расположению органелл. Форма клетки изменяется.
- 3. Нарастает сжатие и уплотнение клетки, на ее поверхности образуются вздутия и выросты; ядро окончательно уплотняется, сморщивается (кариопикноз).
- 4. Клетка распадается на фрагменты, окруженные плазмолеммой (апоптотические тельца), происходит их фагоцитоз соседними клетками. Воспалительная реакция при этом не развивается.

В результате гибели клетки из поврежденных лизосом высвобождаются ферменты, которые переваривают различные части клетки, этот процесс называется аутолизом.
Чтобы заполнить освободившееся после гибели клетки пространство, окружающие клетки либо мигрируют, либо делятся.

Апоптоз считают одним из важных механизмов, препятствующих злокачественному росту.

В организме часто происходят мутации, любая клетка может стать злокачественной. Благодаря активации гена, отвечающего за апоптоз, измененная клетка погибает и злокачественный процесс не развивается.

- □ Апоптоз клетки играет ключевую роль в процессах развития организма, его нормальной жизнедеятельности и регенерации тканей.
- □ Апоптоз делает возможным формирование частей тела в результате отмирания ненужных участков тканей (н-р, наши ладони формируются путём разрушения клеток в межпальцевых промежутках).

- □ Существует гормон-зависимая инволюция (утрата) органов у взрослых: н-р, отторжение эндометрия во время менструального цикла, регрессия молочной железы после прекращения лактации.
- Путем апоптоза происходит патологическая атрофия гормон-зависимых органов, н-р атрофия простаты после кастрации.
- □ Путем апоптоза гибнут поврежденные клетки при вирусных заболеваниях, н-р, при вирусном гепатите фрагменты разрушенных клеток выявляются в печени.

В организме взрослого человека в результате апоптоза ежедневно погибает **50-70 миллиардов клеток.**

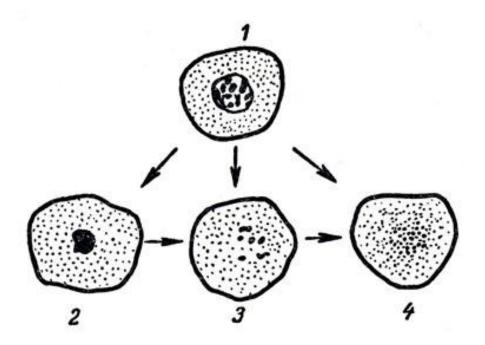
В течение 1 года жизни суммарная масса разрушенных клеток составляет 50 кг.

HEKPO3

Некроз (от греч. nekros - мертвый) — это гибель клеток и тканей в живом организме под воздействием болезнетворных факторов.

Гибель клеток генетически не контролируется.

Причины некроза. Факторы его вызывающие:


- Физические (огнестрельное ранение, радиация, электричество, отморожение, ожог);
- □ Токсические (кислоты, щелочи, соли тяжелых металлов, ферменты, лекарственные препараты, С₂H₅OH);
- Биологические (бактерии, вирусы, простейшие);
- Аллергические (феномен Артюса местная реакция организма на подкожное или внутримышечное введение лекарств; некроз при инфекционно-аллергических заболеваниях);
- □ Сосудистый (инфаркт нарушение кровообращения в артериях.
- Профоневротический (пролежни, незаживающие язвы).

- □ При некрозе происходит беспорядочная фрагментация ДНК, за которой следует её необратимый структурно-функциональный распад и выброс содержимого омертвевшей клетки наружу.
- Частицы мёртвых клеток вылавливаются клетками иммунной системы, и эта защитная реакция организма сопровождается острым воспалительным процессом в области некроза.

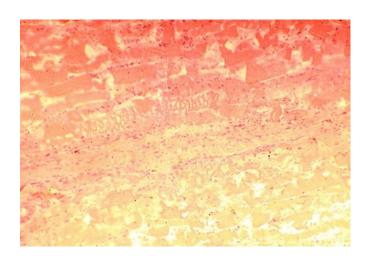
Морфологические изменения при некрозе

□ Гистохимические изменения: через 1-3 часа происходит активный приток ионов кальция в клетку, что тесно связано с необратимым повреждением клетки. Кальций активирует эндонуклеазы (расщепление ДНК), фосфолипазы (разрушение мембран) и протеазы (переваривание цитоскелета). ■ Изменения в ядрах: хроматин мертвой клетки конденсируется в крупные глыбки, ядро уменьшается в объеме, становится сморщенным, плотным. Этот процесс назван пикнозом (сморщиванием). Пикнотическое ядро затем подвергаться кариорексису (распаду ядра) и кариолизису (растворению).

Изменение ядер при некрозе

- 1 ядро нормальной клетки;
- 2 пикноз ядра (сморщивание);
- 3 кариорексис (распад ядра на глыбки);
- 4 кариолизис (растворение ядра)

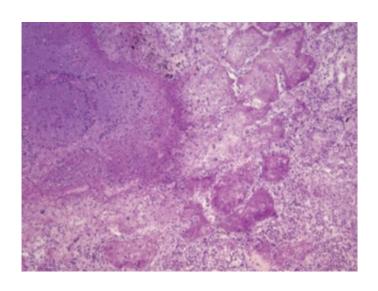
□ Цитоплазматические изменения: через 6 часов цитоплазма клетки становится гомогенной и интенсивно окрашивается эозином в розовый цвет. Специализированные органеллы клетки, например, миофибриллы в миокардиальных клетках, исчезают первыми. Набухание митохондрий и разрушение мембран органелл вызывают вакуолизацию цитоплазмы. Из лизосом высвобождаются ферменты и клетка подвергается аутолизу — самоперевариванию.


■ Изменения межклеточного вещества: коллагеновые, эластические и ретикулиновые волокна превращаются в плотные, гомогенные массы, которые могут подвергаться фрагментации. Реже наблюдается отек.

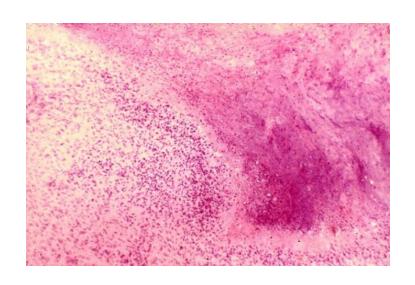
Клинико-морфологические формы некроза

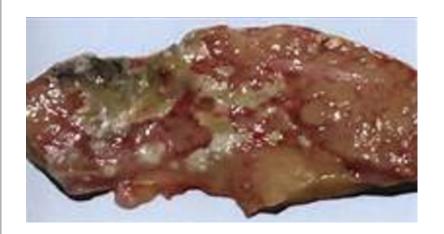
1. Коагуляционный (сухой некроз) — развивается в тканях, содержащих мало влаги, является результатом дегидратации.

Выделяют несколько типов изменений:


 Инфаркт – разновидность сосудистого некроза внутренних органов (кроме мозга); • **Восковидный** (некроз прямых мышц живота при брюшном и сыпном тифах, холере);

■ Творожистый некроз (туберкулез, сифилис);


На разрезе в ткани легкого крупные множественные очаги некроза, желтовато-белого цвета, плотной консистенции, творожистого вида.


В ткани легкого обширные, сливающиеся, эозинофильные очаги казеозного некроза. Ув. х 100.

Туберкулез легких (казеозная пневмония)

 Фирбинойдный некроз при аллергических и аутоиммунных заболеваниях;

Фибринойдный некроз соединительной ткани.

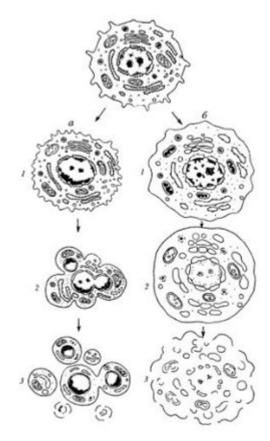
 Жировой некроз – при травме жировой ткани. ■ Гангрена (от греч. gangraina - пожар) — некроз тканей, соприкасающихся с внешней средой и изменяющихся под ее воздействием.

сухая гангрена: некроз тканей протекает без участия микроорганизмов. Мертвая ткань высыхает (мумифицируется) на воздухе. Встречается в конечностях при атеросклерозе, отморожениях, ожогах;

 □ влажная гангрена — мертвая ткань подвергается действию гнилостных микроорганизмов.

□ газовая гангрена — наблюдается при инфицировании микроорганизмами. В результате ферментативной активности бактерий образуются газы.

 □ пролежень – омертвление кожи, в результате сдавления между постелью и костью у лежачих больных.


2. Влажный некроз — характеризуется расплавлением мертвой ткани. Развивается в тканях, где мало белками и много жидкости. Лизис клеток происходит в результате действия собственных ферментов (аутолиз).

Н-р, очаг серого размягчения головного мозга.

- Некроз процесс необратимый.
- При некрозе жизненно важных органов наступает смерть.

Апоптоз – генетически запрограммированное саморазрушение клетки.

Некроз – это генетически не запрограммированная, спонтанная, неконтролируемая смерть клеток.

