

РЕАЛИЗАЦИЯ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ. БИОСИНТЕЗ БЕЛКА

Презентацию подготовила:

Попова Т.К.- учитель биологии

МОУ СОШ №53

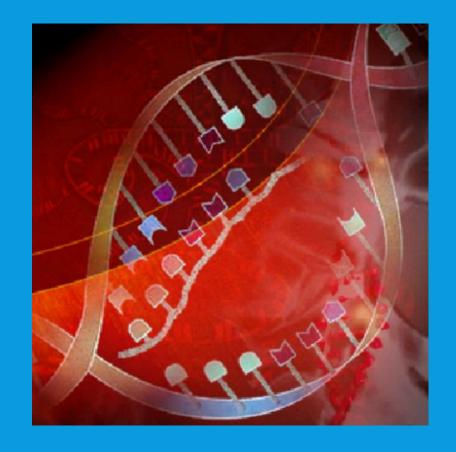
Комсомольск –на- Амуре

Цель урока:

доказать, что биосинтез белка- сложный многоступенчатый процесс, в котором реализуются функции многих веществ и органоидов клетки

Задачи:

- расширить знания о различных формах обмена веществ в клетке и организме,
- изучить свойства генетического кода,
- рассмотреть процесс синтеза белковых молекул,
- определить роль различных веществ и структур клетки в процессе биосинтеза белка.

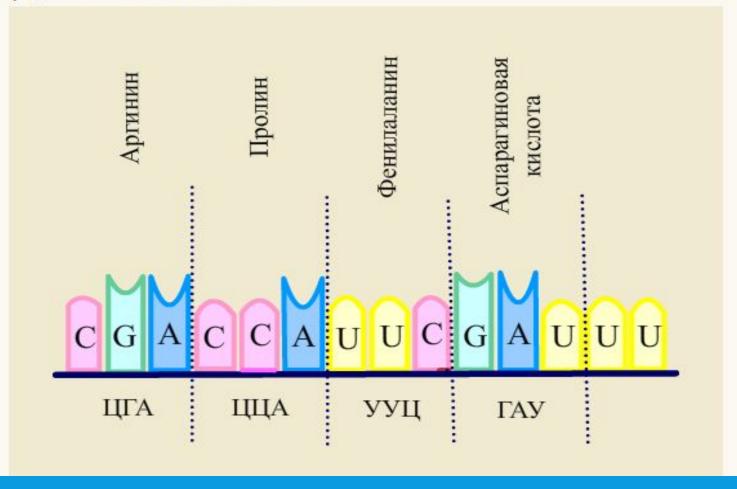


Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает и РНК — копия одной из нитей ДНК, то генетический код записан на языке РНК.

Аминокислота	Кодирующие триплеты РНК	
Аланин	ГЦУ ГЦЦ ГЦА ГЦГ	
Аргинин	ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ	
Аспарагин	ААУ ААЦ	
Аспарагиновая кислота	ГАУ ГАЦ	
Валин	ГУУ ГУЦ ГУА ГУГ	
Гистидин	ЦАУ ЦАЦ	
Глицин	ГГУ ГГЦ ГГА ГГГ	
Глутамин	ЦАА ЦАГ	
Глутаминовая кислота	ΓΑΑ ΓΑΓ	
Изолейцин	АУУ АУЦ АУА	
Лейцин	ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ	
Лизин	ΑΑΑ ΑΑΓ	
Метионин	АУГ	
Пролин	ЦЦУ ЦЦЦ ЦЦА ЦЦГ	
Серин	УЦУ УЦЦ УЦА УЦГ АГУ АГЦ	
Тирозин	УАУ УАЦ	
Треонин	АЦУ АЦЦ АЦА АЦГ	
Триптофан	УГГ	
Фенилаланин	ууу ууц	
Цистеин	УГУ УГЦ	
СТОП	УГА УАГ УАА	

В1881 году Франсуа Жакоб и Жак Моно выдвинули предположение, что РНК, являющаяся «отражением» ДНК, и есть передатчик генетической информации. Они предложили название : информационная или матричная РНК

Ее молекулы наиболее разнообразны по размерам, молекулярной массе (от $5x10^4$ до $4x10^6$ а. е. м.) и стабильности. Информационные РНК составляют 2— 5% от общего количества рибонуклеиновых кислот в клетке.


Генетический код-система записи

генетической информации в виде последовательности нуклеотидов.

- Свойства генетического кода.
- Триплетность
- Универсальность
- Вырожденность
- ◆ Однозначность
- ◆ Полярность
- ❖ Наличие «стоп-кодонов»
- Отсутствие «знаков препинания» внутри нуклеотидной последовательности.

Триплетность

Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.

Избыточность генетического кода

Избыточность (вырожденность) — <u>одной и той же аминокислоте может соответствовать</u> несколько кодонов.

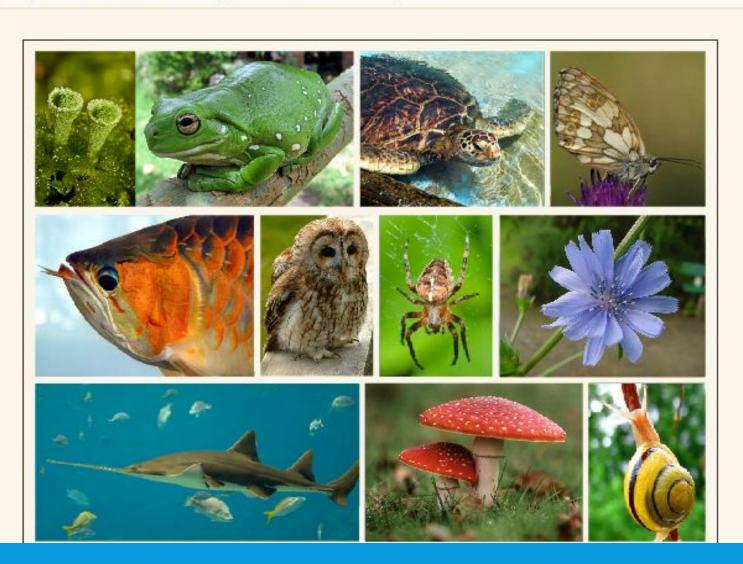
Неперекрывающиеся свойства генетического кода

Одно и то же основание не может одновременно входить в два соседних кодона.

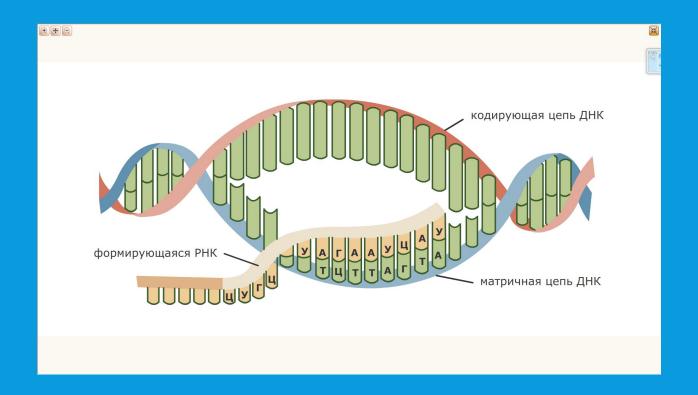
Полярность

Некоторые триплеты являются своеобразными «дорожными знаками», определяющими начало и конец генов (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, что позволяет говорить о полярности генетического кода.

Триплеты - "знаки препинания" "дорожные знаки"

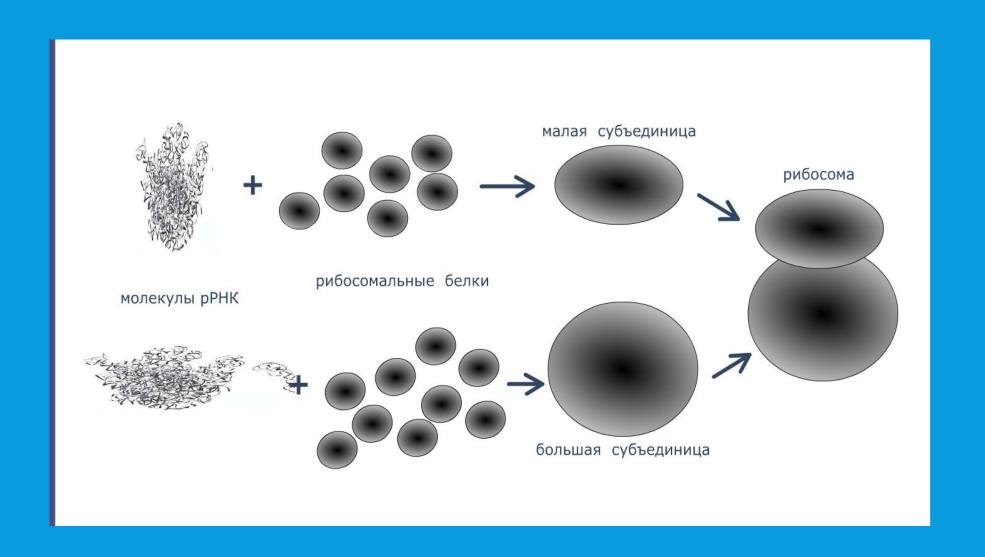

в ДНК

ATT ATL ALIT в РНК


УГА УАГ УАА

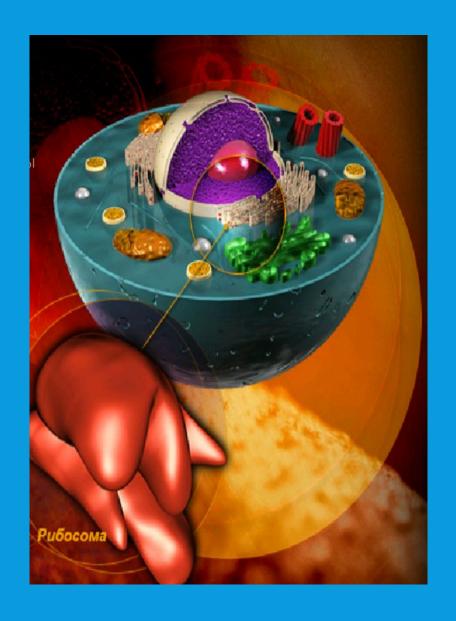
Универсальность генетического кода

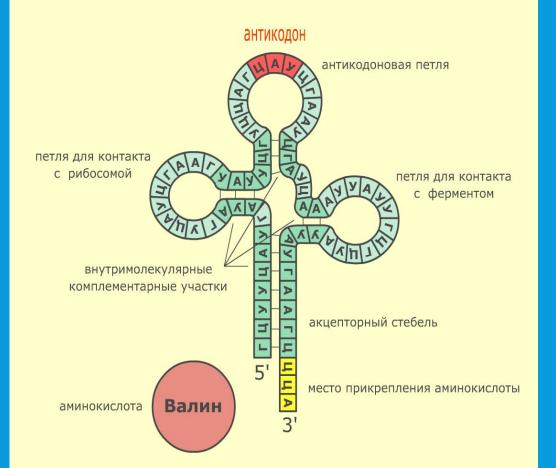
Универсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Он един для всех живых существ. На этом принципе основаны методы генной инженерии.



Транскрипция- первый этап реализации генетической информации- переписывание генетической информации

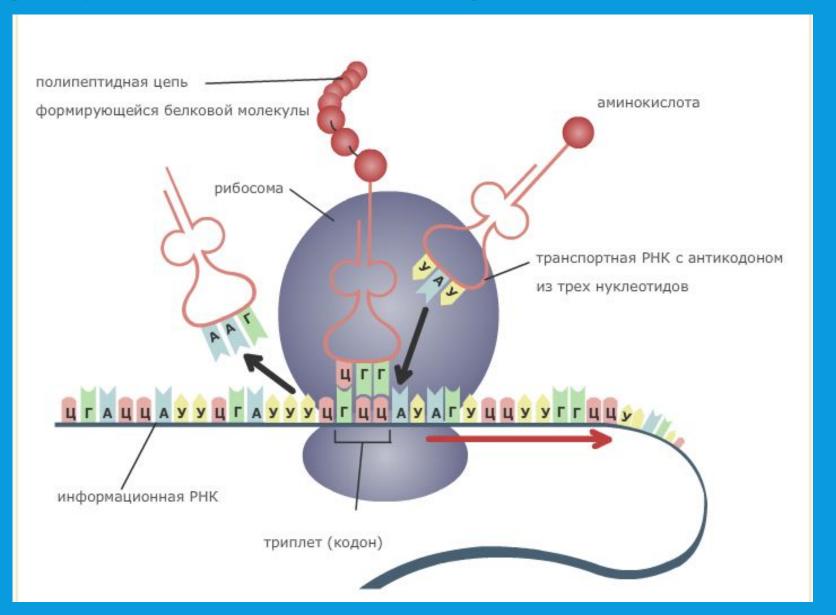
Транскрипция- процесс синтеза м- РНК на матрице ДНК и происходит в области отдельного гена кодирующего один тип белка


Синтез рибосомы из молекул р РНК и рибосомальных белков


Рибосомы-мельчайшие органоиды сферической или слегка овальной формы, диаметром 8-23 нм.

Рибосомы впервые описаны американским цитологом Джорджем Паладе в середине 1950 годов

Термин «рибосома» был предложен Ричардом Робертсом в 1958 году


Транспортная РНК (тРНК)

Молекулы тРНК содержат обычно 75 — 95 нуклеотидов; молекулярная масса 25 — 30 тыс. а. е. м. На долю тРНК в клетке приходится около 10% от общей массы рибонуклеиновых кислот.

В клетке содержится около 30 видов тРНК. Каждый вид тРНК имеет характерную только для него последовательность нуклеотидов. Таким образом, конкретная тРНК может транспортировать только один вид аминокислоты, соответствующий ее антикодону.

Трансляция (лат. *translation* — передача) — процесс биосинтеза полипептидных цепей белков в живых клетках, который заключается в «считывании» генетической информации, «записанной» в виде последовательности нуклеотидов в молекулах иРНК, причём нуклеотидная последовательность иРНК определяет последовательность аминокислот в синтезируемых белках.

Последовательность трансляции:

- 1. и-0РНК соединяется с рибосомой, происходит образование функционального центра рибосомы (ФЦР), размер которого два триплета или шесть нуклеотидов.
- 2. К молекулам т-РНК присоединяются соответствующие их антикодону аминокислоты
- 3. Аминокислоты транспортируются с помощью т-РНК к рибосомам
- 4. По принципу комплементарности происходит считывание информации антикодона т-РНК и кодона и-РНК; в случае их комплементарности аминокислота отделяется от т-РНК.
- 5. Образование пептидной связи между аминокислотой в растущей молекуле белка
- 6.Синтез заканчивается, когда на иРНК начинаются нонсенс-кодоны-УАА,УАГ,УГА. Рибосомы соскакивают с иРНК и распадаются на 2 субъединицы. Полипептидная цепь одновременно снимается с рибосомы и поступает внутрь ЭПС, где дозревает и приобретает все структуры белка

Заполните таблицу:

Что происходит на данном этапе	Что необходимо	Функции структур, веществ и органоидов, принимающих участие в процессе
Транскрипция		
Трансляция		