Тема: Видимое движение планет

Состав Солнечной системы

Планеты- 8 больших планет со спутниками и кольцами: Меркурий, Венера, Земля (с Луной), Марс (с Фобосом и Деймос), Юпитер (с кольцом и не менее 63 спутников), Сатурн (с мощным кольцом и не менее 55 спутников) – эти планеты видны невооруженным глазом; Уран (открыт в 1781г, с кольцом и не менее 29 спутника), Нептун (открыт в 1846г, с кольцом и не менее 13 спутников).

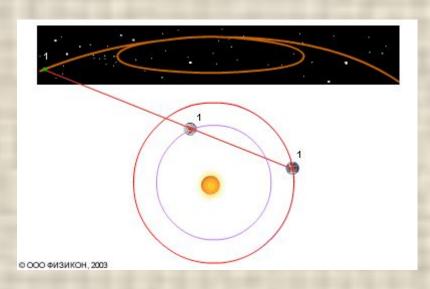
Карликовые планеты - Плутон (открыт в 1930г, его спутник Харон - была планетой до 24.08.2006 года), Церера (первый астероид открыт в 1801г), и объекты пояса Койпера: Эрис (136199, открыт в 2003г) и Седна (90377, открыт в 2003г).

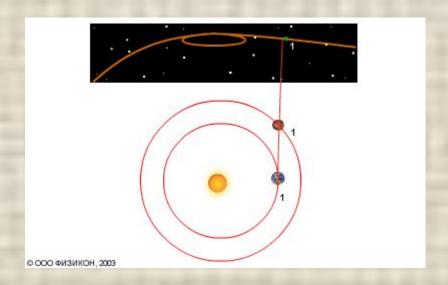
Малые планеты – астероиды = (первый Церера открыт в 1801г - переведен в разряд карликовых планет), расположены в основном в 4-х поясах: Главном – между орбитами Марса и Юпитера, поясе Койпера – за орбитой Нептуна, троянцы: на орбите Юпитера и Нептуна. Размеры менее 800 км. Известно почти 300 000.

Кометы – небольшие тела до 100 км в диаметре, конгломерат пыли и льда, движущиеся по очень вытянутым орбитам. Облако Оорта (резервуар комет) на периферии Солнечной системы (3000 – 160000 a.e).

Метеорные тела – небольшие тела от песчинок до камней в несколько метров диаметром (образуются от комет и дробления астероидов). Небольшие при входе в земную атмосферу сгорают, а те, которые достигают Земли – метеориты.

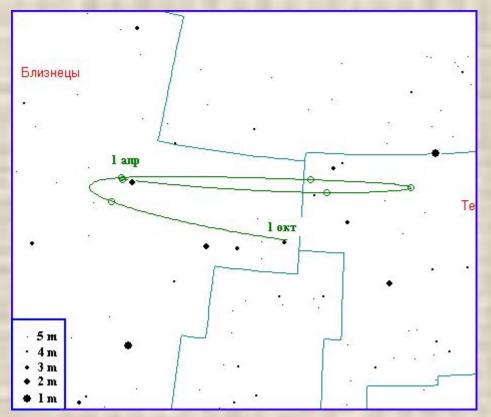
Межпланетная пыль — от комет и дробления астероидов. **Межпланетный газ** — от Солнца и планет, очень разряжен. **Электромагнитное излучение и гравитационные волны.**




Петлеобразное движение планет

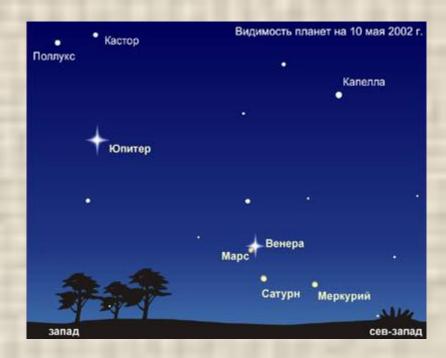
Более чем за 2000 лет до НЭ люди заметили, что некоторые звезды перемещаются по небу – их позже греки назвали "блуждающими" – **планетами**. Нынешнее название планет заимствовано у древних римлян. Выяснилось, что планеты блуждают в зодиакальных созвездиях.

Поскольку при наблюдении с Земли на движение планет вокруг Солнца накладывается еще и движение Земли по своей орбите, планеты перемещаются на фоне звезд то с запада на восток (прямое движение), то с востока на запад (попятное движение). Объяснить это движение смог к 1539 году польский астроном **Николай Коперник** (1473-1543).



Для внешней, Марса

Характер видимого движения планеты зависит от того, к какой группе она принадлежит.



Видимое движение Марса среди звёзд в период с 1.10.2007 по 1.04.2008

Венера и Юпитер в лучах вечерней зари.

Редкое небесное явление: пять планет Солнечной системы (все какие только можно увидеть невооруженным глазом) встретились на вечернем небе! С 13 по 16 мая 2002г возле "блуждающих светил" присутствовал серп молодой Луны.

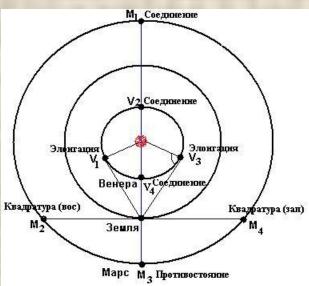
Конфигурация планет

Конфигурация – характерное взаимное расположение планеты, Солнца и Земли.

Нижние (внутренние) – планеты, орбиты которых расположены внутри земной орбиты.

Марс Сатурн

Верхние (внешние) – планеты, орбиты которых находятся за орбитой Земли.


Для нижних(внутренних)

<u>соединение</u> планета находится на прямой Солнце-Земля.

верхнее – планета за Солнцем (V₂).

нижнее – планета перед Солнцем (V₄). **элонгация** - угловое удаление планеты от Солнца. мак: Меркурия-28°, Венеры-48°. **восточная** - планета видна на востоке до

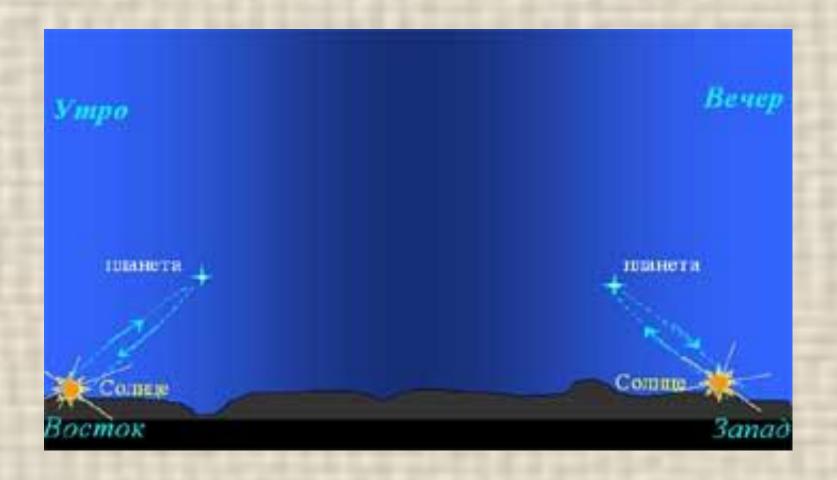
восхода Солнца в лучах утренней зари (V_1). **Западная**— планета видна на западе в лучах вечерней зари после захода Солнца (V_3).

Виды

Для верхних (внешних)

соединение - планета за Солнцем, на прямой Солнце-Земля (М₄).

противостояние – планета за Землей от Солнца – лучшее время наблюдения внешних планет, она полностью освещена Солнцем (M_3) .

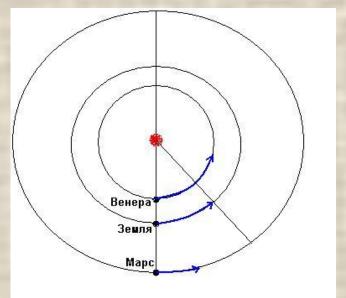

квадратура - четверть круга

западная – планета наблюдается в западной стороне (M₄).

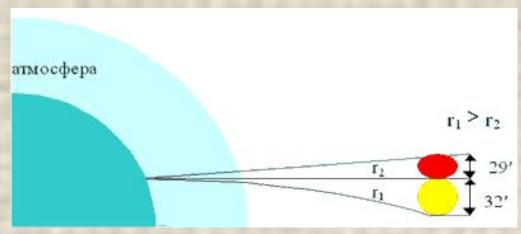
восточная –наблюдается в восточной стороне (M_2) .

Внешняя планета может находиться на любом угловом расстоянии от Солнца.

Условия видимости внутренних планет


Внутренние планеты лучше всего видны при максимальном удалении от Солнца (в элонгации), которая для Меркурия составляет 28°, Венеры-48°.

Периоды обращения планет


В ходе разработки гелиоцентрической системы строения мира Николай Коперник к 1539 году получил формулы (уравнения синодического периода) для расчета периодов обращения планет и впервые их вычислил.

$$S = rac{T \cdot T_{\oplus}}{T_{\oplus} - T}$$
 для внутренних $S = rac{T \cdot T_{\oplus}}{T - T_{\oplus}}$ для внешних

Сидерический (Т —звездный) —промежуток времени в течение которого планета совершает полный оборот вокруг Солнца по своей орбите относительно звезд. Синодический (S) — промежуток времени между двумя последовательными одинаковыми конфигурациями планеты.

Нижние (внутренние) планеты движутся по орбите быстрее Земли, а верхние (внешние) медленнее.

Астрономическая рефракция - явление преломления (искривления) световых лучей при прохождении через атмосферу, вызванное оптической неоднородностью атмосферы. Рефракция изменяет зенитное расстояние

Рефракция изменяет зенитное расстояние (высоту) светил, "поднимая" изображения светил над их истинными положениями.

В зените рефракция минимальна - она возрастает по мере наклона к горизонту до 35' и сильно зависит от физических характеристик атмосферы: состава, плотности, давления, температуры.

Вследствие рефракции истинная высота небесных светил всегда меньше их видимой высоты. Искажаются форма и угловые размеры светил: на восходе и закате близ горизонта "сплющиваются" диски Солнца и Луны, поскольку нижний край диска поднимается рефракцией сильнее верхнего.

Преломление лучей звездного света в атмосферных слоях (потоках) разной плотности вызывает мерцание звезд - неравномерные усиления и ослабления их блеска, сопровождающиеся изменениями их цвета.

Космические явления	Небесные явления, возникающие вследствие данных космических явлений
Атмосферная рефракция:	- искажение небесных координат светил; - необходимость поправки экваториальных координат небесных светил на рефракцию; - искажение формы и угловых размеров небесных светил по высоте на восходе и закате; - мерцание звезд; - "зеленый луч".
Рассеяние света в атмосфере Земли:	 голубой цвет дневного неба; синий, сиреневый цвет вечернего (утреннего) неба; сумерки. продолжительность светового времени суток (дня) всегда превышает промежуток времени от восхода до захода Солнца; белые ночи; полярный день и полярная ночь на высоких широтах; свечение ночного неба; заря; красный цвет зари; покраснение дисков Солнца и Луны на восходе и закате.