Радиационная опасность на околоземных орбитах и межпланетных траекториях космических аппаратов

Н.В.Кузнецов

Обсуждаются представления, которые лежат в основе количественных оценок радиационной опасности, возникающей из-за возможного нарушения работоспособности бортового оборудования и приборов космических аппаратов при воздействии высокоэнергичных (>~100 кэВ) заряженных частиц космической радиации.

Демонстрируются возможности расчетных моделей и методов для прогнозирования характеристик радиационной опасности на космических аппаратах в различных условиях его полета.

Определение. Примеры аномалий. Источники и причина радиационной опасности. Выводы.

•Радиационные эффекты

Механизмы возникновения. Линейная передача энергии. Потери энергии частиц. Классификация радиационных эффектов. Эффекты поглощенной дозы. Одиночные случайные эффекты. Выводы.

•Факторы космического полета

Происхождение радиационных полей. Солнечная активность. Вековой дрейф магнитного поля Земли. Проникновение космических лучей в магнитосферу. Геомагнитная активность. Движение КА вдоль траектории полета. Перемещение КА на траектории. Конструкция КА (защитные экраны). Выводы

•Прогнозирование радиационной опасности

Методика прогнозирования. Примеры. Выводы.

Внешние факторы воздействия на космический аппарат

Вакуум Невесомость Колебания температуры Электромагнитная радиация Метеориты Космический мусор, Вибрация и высокие нагрузки при старте

Корпускулярная радиация Низкоэнергичная (<~10-100 кэВ) Высокоэнергичная (> 100 кэВ)

Пример изменения мощности солнечных батарей

Year 2001 - 2005

http://esa-spaceweather.net/spweather/workshops/eswwll/ proc/Session4/Presentation KEIL.pps

Распределение мест возникновения одиночных сбоев на космических аппаратах, находящихся на разной высоте

http://radhome.gsfc.nasa.gov/radhome/papers/202_SSR.pdf (Poivey C., et al.,2002)

Источники радиационных аномалий на КА

Радиационный	Галактические	Солнечные	Вторичное
пояс Земли	космические	космические	излучение
(РПЗ)	лучи (ГКЛ)	лучи (СКЛ)	ү-кванты
электроны	протоны	протоны	протоны
протоны	ядра	ионы	нейтроны

Причина радиационных аномалий - радиационные эффекты в изделиях космической техники:

Терморегулирующих покрытиях Полимерных покрытиях Оптических покрытиях Солнечных элементах Изделиях микро- и оптоэлектроники

Выводы

к разделу «Аномалии на космических аппаратах»

- Высокоэнергичная корпускулярная радиация космического пространства. является одним из важных внешних факторов, который инициирует возникновение аномалий на КА,
- Причиной радиационных аномалий на КА является возникновение радиационных эффектов в изделиях космической техники.

Механизмы возникновения

Передача кинетической энергии от налетающих частиц веществ (первичный

npoyecc)

Ионизационные эффекты		Структурные нарушения			
Неравновесные электроны и дырки	Разорванные атомные связи	Вакансии и междоузлия	Разупорядочен- ные области		
Релаксационные процессы термостабилизации и электронейтрализации (релаксационный процесс)					
Рекомбинация Образование объемного заряда Радио-	Латентные треки Свободные химические	Рекомбинация Уход на стоки (примесные дефекты)	Образование объемных дефектов (кластеры)		
люминисценция Генерация тока	радикалы	Объединение в комплексы (собственные дефекты)			

Н.В.Кузнецов. Радиационная опасность на космических аппаратах

Радиационные эффекты. Линейная передача энергии (ЛПЭ)

- ЛПЭ основная физическая величина, которая количественно характеризует энергетический вклад одной частицы в образование радиационного эффекта,
- ЛПЭ, L средняя энергия, которую вещество может получить от налетающей заряженной частицы на единице ее пути.
- Единицы измерения ЛПЭ МэВ/см или МэВ/(г/см2)

Потери энергии заряженных частиц

Радиационные эффекты Классификация

- Эффекты поглощенной дозы проявляются в результате суммирования энергии, которую множество частиц передает чувствительному объему вещества,
- Случайные одиночные эффекты возникают при передаче энергии от одной частицы чувствительному объему вещества

Поглощенная доза

По определению: Поглощенная доза *D* - энергия, переданная от излучения элементарному объему вещества единичной массы

При воздействии потока заряженных частиц Φ [1/см²] с энергией E_0 =const

$$D = \left(\frac{dE}{dx}\right)_{E_0} \Phi$$

При воздействии потока частиц $\Phi_i(E)$ 1/см²МэВ разного типа и разной энергии $D = \sum_i \int \left(\frac{dE}{dx} \Big|_E \right)_i \Phi_i(E) dE = \int L \Phi(L) dL$ где $\Phi(L) = \sum_i \Phi_i(E) / \frac{d}{dE} \left(\frac{dE}{dx} \right)_E$ - спектр ЛПЭ потока всех частиц

Радиационные эффекты Пример эффекта ионизационной дозы

Смещение порога вольт-амперной характеристики в *n*-канальном транзисторе металл-окисел-полупроводник

Радиационные эффекты Пример эффекта неионизационной дозы

Уменьшение тока короткого замыкания солнечных элементов (*Walters, et.al., 2004*)

Ток короткого замыкания, отн.ед.

Радиационные эффекты Эквивалентная доза

Количественной мерой радиационного эффекта в радиобиологии принято использовать величину эквивалентной дозы

Одиночные случайные эффекты

Условие возникновения: энергия *ΔE*, переданная частицей чувствительному объему, должна быть выше пороговой величины *Ec*, характеризующей функциональное свойство этого объема.

Одиночные случайные эффекты

Количественной мерой возникновения ОСЭ при воздействии потока частиц является частота ОСЭ

При воздействии плотности потока частиц $F(1/cm^2c)$ с энергией E_0 =const и углом падения θ_0 = const

 $v = \sigma(E_0, \theta_0) \cdot F$

При воздействии плотности изотропного потока частиц $F_i(E)$ (l/cm^2cM эВ) разного типа и разной энергии

$$\nu = \sum_{i} \iiint \sigma_i(E, \Omega) F_i(E) dE d\Omega$$

или используя модельные представления для прямого механизма возникновения ОСЭ

$$v = \iiint \sigma_{ion}(L, \Omega) F(L) dE d\Omega$$

где F(L)- дифференциальный спектр ЛПЭ плотности потока частиц

Одиночные случайные эффекты

Примеры сечения ОСЭ у микросхем памяти при нормальном угле падения в зависимости от:

ЛПЭ ионов

энергии протонов

Выводы

к разделу «Радиационные эффекты»

- В настоящее время изучено влияние радиационных эффектов на свойства многих материалов и изделий космической техники.
- Радиационных эффекты в изделиях космической техники подразделяются на эффекты поглощенной дозы (ЭПД) и одиночные случайные эффекты (ОСЭ).
 - Количественной мерой радиационной опасности от ЭПД служит расчетная величина поглощенной дозы (ионизационной и неионизационной).
 - Количественной мерой радиационной опасности от ОСЭ служит расчетная частота одиночных случайных эффектов.

Выводы (продолжение) к разделу «Радиационные эффекты»

- Радиационная опасность для изделий космической техники на борту КА, зависит от:
 - индивидуальных особенностей материала и прибора, которые характеризуются величиной линейной передачи энергии или сечением одиночных случайных эффектов и отражают их радиационную стойкость (чувствительность),
 - воздействующего радиационного окружения, которое характеризуется дифференциальными энергетическими спектрами потока Ф(E) или плотности потока F(E) частиц и отражают радиационные условия на КА.

Глобальные:

- Происхождение радиационных полей
- Солнечная активность,
- Дрейф магнитного поля Земли
- Экранирующее свойство магнитосферы Земли (для частиц космических лучей)
- Геомагнитные возмущения

Локальные

- Перемещение космического аппарата в пространстве
- Конструкция КА (защитные экраны)
- Анизотропия потоков частиц и тень Земли

Факторы космического полета Происхождение радиационных полей

- В межпланетном пространстве существуют
- галактические космические лучи (ГКЛ), в состав которых входят протоны и ядра химических элементов;
- солнечные космические лучи (СКЛ), в состав которых входят протоны и ионы химических элементов ;

В околоземном космическом пространстве существуют

 радиационные пояса Земли (РПЗ), которые в основном состоят из электронов и протонов, захваченных магнитным полем Земли.

Потоки частиц космических лучей также проникают в магнитосферу Земли.

Пример энергетических спектров частиц на орбитах КА

23

Солнечная активность

Пример солнечноциклических вариаций потоков протонов РПЗ с E=80-215 МэВ на разных дрейфовых оболочках L (Huston, S. L., 1996)

Солнечная активность

Пример солнечноциклических вариации потоков ядер гелия ГКЛ с энергией 70-95 МэВ/нуклон и чисел Вольфа в зависимости от календарного времени.

Точки – экспериментальные данные спутника IMP-8.

Солнечная активность

Солнечно- циклические вариации потоков протонов СКЛ (E>30 МэВ) и чисел Вольфа в зависимости от календарного времени

Пиковые потоки протонов СКЛ в зависимости от чисел Вольфа

Факторы космического полета Солнечная активность

Сравнение потоков ГКЛ и СКЛ в межпланетном пространстве

(W>145) солнечной активности с 1965 по 1997 г.г.

Факторы космического полета Вековой дрейф магнитного поля Земли

Отношение потоков протонов с энергией более 40 МэВ, рассчитанное с использованием базы данных модели AP8MAX, для эпохи 1991 и 1970 г.г. над Бразильской аномалией на высоте 500 км. (Энциклопедия, 2000) Энергетические спектры протонов на круговой орбите с высотой 500 км и наклонением 82 градуса, рассчитанные по модели для эпох 1970 и 2000 г.г.

Проникновение космических лучей в магнитосферу Земли

Функция проникновения частиц в точку

Проникновение космических лучей в магнитосферу Земли

Функция проникновения частиц в точку

Эффективная жесткость геомагнитного обрезания на орбите станции «Мир» в зависимости от времени полета Накопление поглощенной дозы на станции «Мир при возникновении событий СКЛ в июле и ноябре 2000 г. в зависимости от времени с момента появления потоков СКЛ вблизи Земли.

Проникновение космических лучей в магнитосферу Земли Функция проникновения частиц на орбиту

Геомагнитная активность

Пример распределения потоков электронов в РПЗ, зарегистрированных на спутнике SAMPEX до и после магнитной бури 9-10 января 1997 г.

http://www.haystack.mit.edu/~jcf/jan97/sampex.gif

Перемещение космического аппарата в пространстве

Пример распределения потоков протонов в околоземном пространстве

space-env.esa.int/EMA_Events/SPENVIS_WS2002/Proceedings/bourdarie.pdf

Перемещение космического аппарата в пространстве

Примеры расчетных зависимостей потоков протонов (сплошные кривые) и электронов (пунктирные кривые) РПЗ на орбитах КА от времени полета

Орбита МКС, 400-450 км, 51 град.

Высокоэллиптическая орбита 500-40000 км, 63 град.

Перемещение космического аппарата в пространстве

Примеры изменения частоты сбоев в микросхеме памяти (объем 16М) в зависимости от времени полета КА

Конструкция КА (защитные экраны)

Энергетические спектры протонов и вторичных нейтронов, возникающие за защитой при воздействии протонов ГКЛ и СКЛ.

Выводы

к главе «Факторы космического полета»

- В околоземном космическом пространстве существуют высокоэнергичные потоки частиц РПЗ, ГКЛ и СКЛ, которые необходимо учитывать при прогнозировании радиационной опасности на КА.
- Разработанные модели устанавливают энергетические спектры сглаженных (усредненных за несколько месяцев) потоков частиц с учетом влияния солнечной активности и позволяют прогнозировать вариации этих потоков, связанные с изменением положения КА в пространстве.
- Существующие ядерно-физические данные позволяют рассчитывать характеристики радиационной опасности для материалов и приборов, расположенных за защитными экранами внутри КА.

Схема компьютерного пакета программ

Модели радиационного окружения в интерактивных информационных системах

Радиационное поле	Модель		
Радиационный пояс Земли (протоны)	AP8-MIN; AP8-MAX		
Радиационный пояс Земли (электроны)	AE8-MIN; AE8-MAX		
Галактические космические лучи (протоны и ядра)	CREME96; Badhwar&O'Neill		
Солнечные космические лучи (протоны)	JPL92		
Солнечные космические лучи (ионы)	CREME96;		
СREME96 - <u>http://creme96.nrl.navy.mil</u> SPENVIS - <u>http://www.spenvis.oma.be/spenvis</u> SIREST - http://www.sirest.larc.nas.gov			

Пример расчета эквивалентной дозы

Полет на Марс

Орбита МКС

Пример расчета частоты ОСЭ

Перемежающиеся отказы (сбои) в «типичной» микросхеме памяти

Пример расчета поглощенной дозы на круговых околоземных орбитах

Поглощенная доза (10 лет) в зависимости от высоты круговой орбиты КА (защита 1 г/см²)

Пример расчета частоты (количества) одиночных случайных эффектов на круговых околоземных орбитах

Частота одиночных сбоев в микросхемах памяти в зависимости от высоты круговой орбиты КА (защита 1 г/см2)

Количество одиночных отказов (10 лет) в микросхемах с L_c = 20 МэВ/(мг/см²) в зависимости от высоты круговой орбиты КА (защита 1 г/см2) 43

Выводы

к разделу «Прогнозирование радиационной опасности»

 Существующие интегрированные пакеты программ, разработанные с использованием моделей потоков частиц радиационного окружения и моделей радиационных эффектов, позволяют оперативно и с необходимой полнотой обеспечить количественную оценку радиационной опасности, ожидаемую на борту КА на заданной орбите и в заданный период времени.

Литература