
Тема урока: Законы Кеплера

Трофимова Е.В. УО ОГО СШ №4

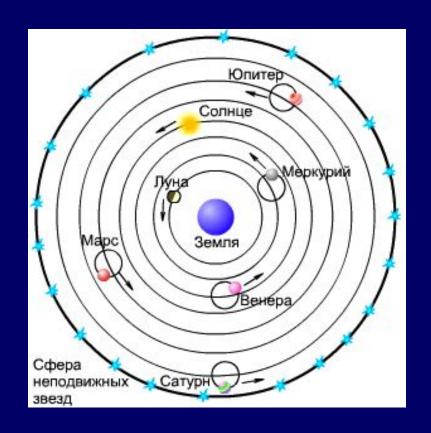
Задача (индивидуальное)

Определите полуденную высоту Солнца в Архангельске и Ашхабаде в дни летнего и зимнего солнцестояния.

```
\phi_{1} = 65^{0}; \phi_{2} = 38^{0}; \delta_{\pi} = 23,5^{0}; \delta_{3} = -23,5^{0}; \delta_{1\pi} = -23,5^{0}; \delta_{1\pi} = -23,5^{0}; \delta_{1\pi} = -23,5^{0}; \delta_{1\pi} = -23,5^{0}; Решение.
```

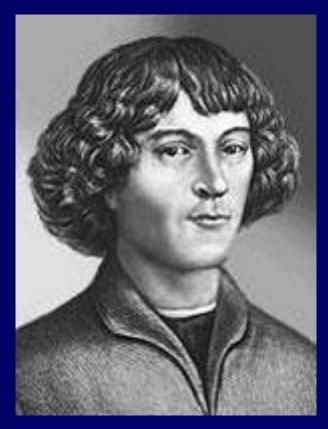
Приближенные значения широты Архангельска (ф 1 и Ашхабада (ф2) находим по географической карте. Склонения Солнца в дни летнего и зимнего солнцестояний известны.

```
По формуле H = 90^{\circ} - \phi + 6 находим: H_{1,1} = 90-65+23,5 = 48.5^{\circ}, H_{1,3} = 90-65-23,5 = 1.5.^{\circ}. H_{2,1} = 90-38-23,5 = 75,5^{\circ}, H_{2,3} = 90-38-23,5 = 28,5^{\circ}.
```

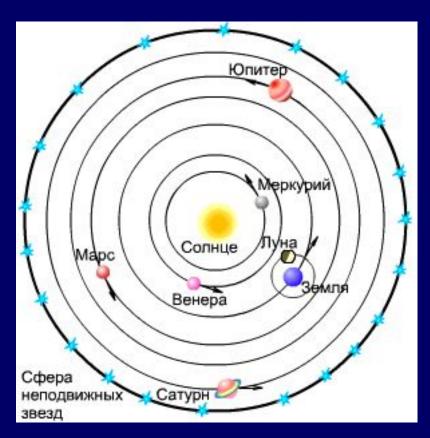

ПЛАН

- 1. Первый закон Кеплера 2. Второй закон Кеплера
 - 3. Третий закон Кеплера

С древнейших времен считалось, что небесные тела движутся по «идеальным кривым» - окружностям.

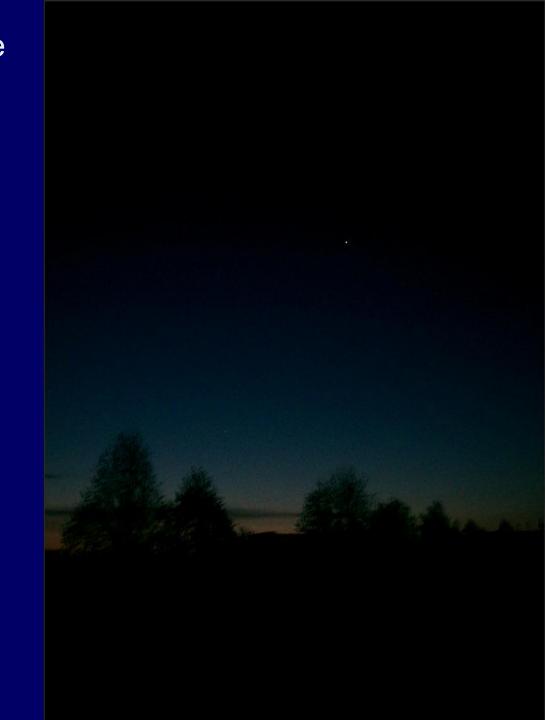


Клавдий Птолемей (ок. 90 – ок. 160)



Геоцентрическая система Птолемея

В теории Николая Коперника, создателя гелиоцентрической системы мира, круговое движение также не подвергалось сомнению.


Николай Коперник (1473–1543)

Гелиоцентрическая система мира Коперника

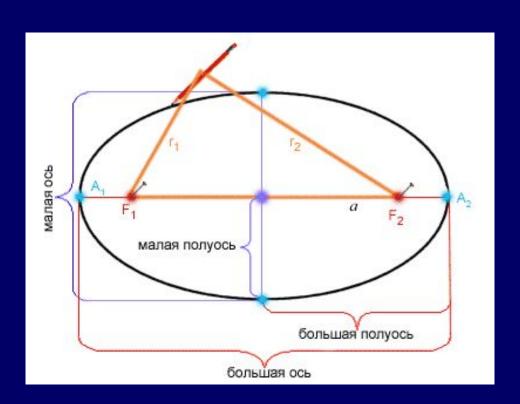
Наблюдаемое положение планет не соответствовало предвычисленному в соответствии с теорией кругового движения планет вокруг Солнца. Почему?

В XVII веке ответ на этот вопрос искал немецкий астроном и математик Иоганн Кеплер и открыл кинематические законы движения планет

Иоганн Кеплер, изучая движение Марса по результатам многолетних наблюдений датского астронома Тихо Браге, обнаружил, что орбита Марса не окружность, а имеет вытянутую форму эллипса.

Иоганн Кеплер (1571–1630)

Тихо Браге (1546-1601)


Эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси. Линия, соединяющая любую точку эллипса с одним из его фокусов,

называется *радиусом-вектором* этой точки.
Степень отличия эллипса от окружности характеризует его эксцентриситет
е

равный отношению расстояний между фокусами к большой оси:

$$e = F_1 F_2 / A_1 A_2$$
,

При совпадении фокусов (е = 0) эллипс превращается в окружность.

Кеплер исследовал движения всех известных в то время планет и эмпирически вывел три закона движения планет относительно Солнца.

Эти законы применимы не только к движению планет, но и к движению их естественных и искусственных спутников.

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

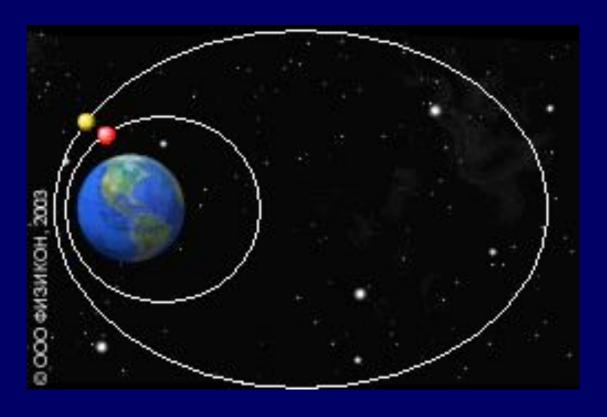
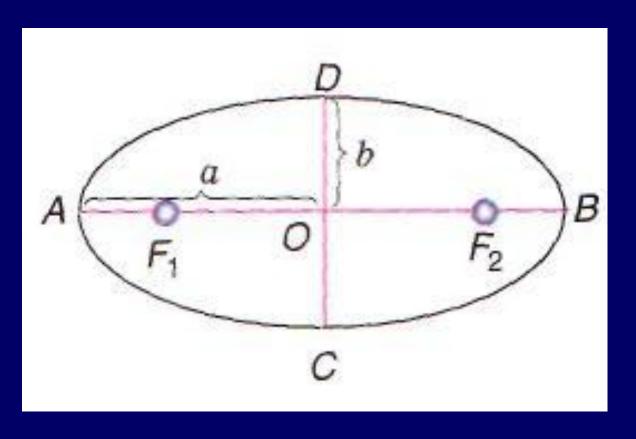
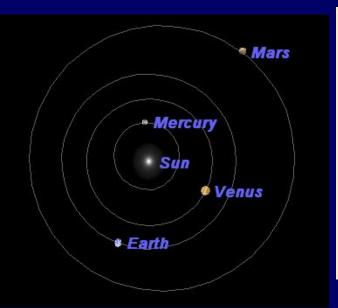
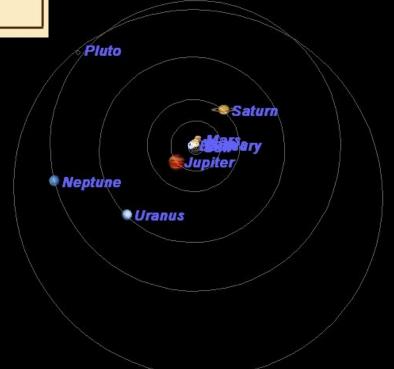



Иллюстрация первого закона Кеплера на примере движения спутников Земли


Отрезок AB называется большой осью, CD малой осью эллипса. Отрезки

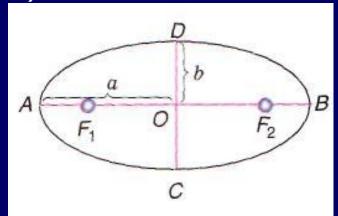
AO=OB=a, CO=OD=b – называются соответственно большой и малой полуосями эллипса. Отношение называется эксцентриситетом эллипса


$$e = \frac{OF_1}{a} = \frac{OF_2}{a}$$

Орбиты планет – эллипсы, мало отличающиеся от окружностей, так как их эксцентриситеты малы.

Название	Эксцентриситет
Меркурий	0,206
Венера	0,007
Земля	0,017
Mapc	0,093

Название	Эксцентриситет
Юпитер	0,049
Сатурн	0,057
Уран	0,046
Нептун	0,011
Плутон	0,244



Большая полуось орбиты планеты – это ее среднее расстояние от Солнца.

Среднее расстояние Земли от Солнца принято в астрономии за единицу расстояния и называется *астрономической единицей*: 1 а.е. = 149 600 000 км.

Ближайшую к Солнцу точку орбиты называют перигелием (греч. пери – возле, около; Гелиос – Солнце), а наиболее удаленную – афелием (греч. апо – вдали).

$$q = a - a \cdot e = a(1 - e),$$
 2
 $Q = a(1 + e).$ 3

По эллипсам движутся не только планеты, но и их естественные и искусственные спутники. Ближайшая к Земле точка орбиты Луны или искусственного спутника Земли называется перигеем (греч. Гея или Ге – Земля), а наиболее удаленная –

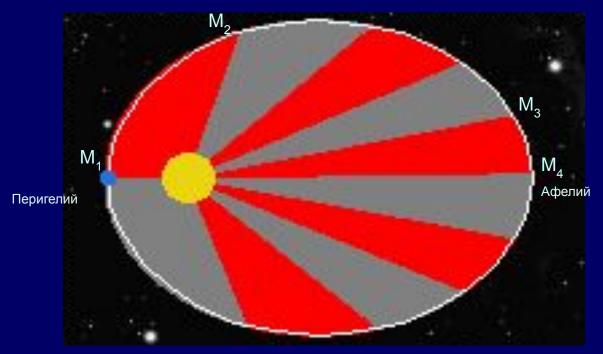
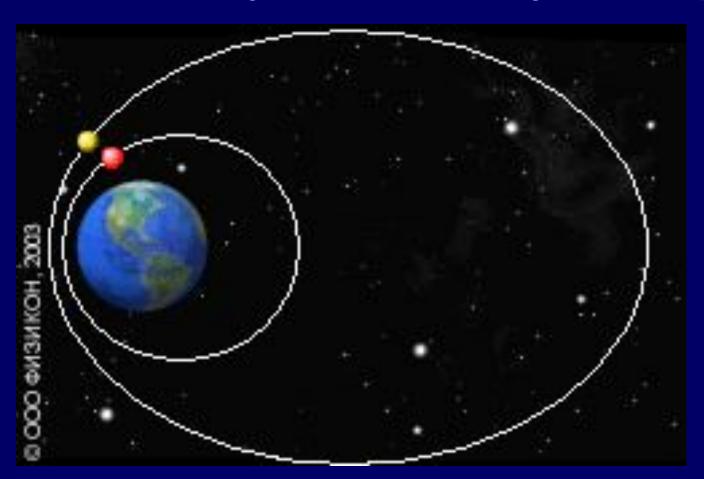

Радиус-вектор планеты за равные промежутки времени описывает равные площади.

Иллюстрация второго закона Кеплера на примере движения спутника Земли

Планеты движутся вокруг Солнца неравномерно:

линейная скорость планет вблизи перигелия больше, чем вблизи афелия.



У Марса вблизи перигелия скорость равна 26,5 км/с, а около афелия - 22 км/с.

У некоторых комет орбиты настолько вытянуты, что вблизи Солнца их скорость доходит до 500 км/с, а в афелии снижается до 1 см/с.

Третий закон Кеплера:

Квадраты сидерических периодов обращений двух планет относятся как кубы больших полуосей их орбит:

$$\frac{\mathsf{T}_1^2}{\mathsf{T}_2^2} = \frac{a_1^3}{a_2^3}$$

$$T=\sqrt{a^3}$$
.

Иллюстрация третьего закона Кеплера на примере движения спутников Земли

Первый закон Кеплера

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

$$e = \frac{OF_1}{a} = \frac{OF_2}{a}$$

$$q = a - a \cdot e = a(1 - e),$$

 $Q = a(1 + e).$

Второй закон Кеплера

Радиус-вектор планеты за равные промежутки времени описывает равные площади.

Третий закон Кеплера

Квадраты сидерических периодов обращений двух планет относятся как кубы больших полуосей их орбит.

$$\frac{\mathsf{T}_1^2}{\mathsf{T}_2^2} = \frac{a_1^3}{a_2^3}$$

$$T=\sqrt{a^3}$$
.

Какое расстояние называется астрономической единицей?

Среднее расстояние Земли от Солнца называется астрономической единицей.

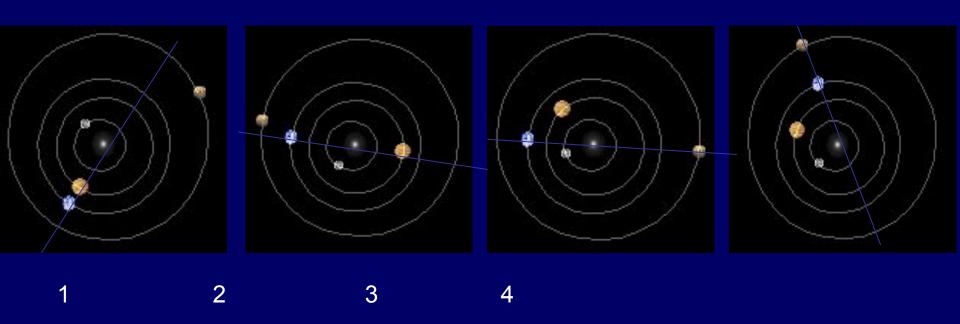
Чему равна 1 а.е.?

1 a.e. = 149 600 000 км

Первый закон Кеплера

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера


Радиус-вектор планеты за равные промежутки времени описывает равные площади.

Третий закон Кеплера

Квадраты сидерических периодов обращений двух планет относятся как кубы больших полуосей их орбит.

$$\frac{\mathsf{T}_1^2}{\mathsf{T}_2^2} = \frac{a_1^3}{a_2^3}$$

Задача 1. Замечено, что противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

Задача. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

$$S = 2$$
 года

$$T_{\oplus} = 1$$
 год

$$a_{\oplus}=1$$
 a. e.

$$a-?$$

Решение.

Большую полуось орбиты можно определить из третьего закона Кеплера: $\frac{T^2}{T_\oplus^2} = \frac{a^3}{a_\oplus^3}$. $a^3 = \frac{a_\oplus^3 T^2}{T_\oplus^2}$, а звездный период —

из соотношения между сидерическим и синодическим периодами:

$$\frac{1}{S} = \frac{1}{T_{\oplus}} - \frac{1}{T}, \qquad T = \frac{T_{\oplus} S}{S - T_{\oplus}}. \qquad T = \frac{1 \text{ год} \cdot 2 \text{ года}}{2 \text{ года} - 1 \text{ год}} = 2 \text{ года}.$$

$$a = \sqrt[3]{\frac{(1a. e.)^3 (2 \text{ года})^2}{(1 \text{ год})^2}} \approx 1,59 \text{ a. e.}$$

Ответ: а≈1,59 а. е.

Задачи

1. Определите афелийное расстояние астероида Минск, если большая полуось его орбиты равна 2,88 а.е., а эксцентриситет составляет 0,24.

Дано:

$$e = 0.24$$

Q-?

Решение:

$$Q = a(1+e)$$

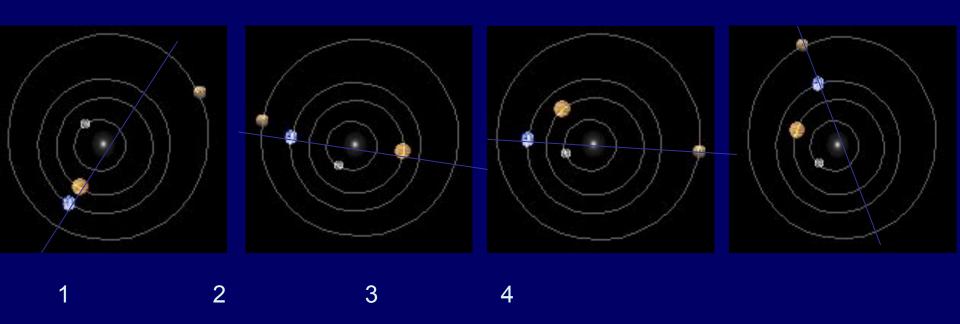
$$Q = 2,88 \cdot (1+0,24) = 3,57a.e.$$

Ответ: 3,57 а.е.

Задачи

2. Определите среднее расстояние от Юпитера до Солнца, если известно, что его звездный период обращения вокруг Солнца равен 11,86 года.

Дано: T=11,86 года $T_3=1$ год $a_3=1$ а.е.


Решение:

$$\frac{T^2}{T_3^2} = \frac{a^3}{a_3^3} \qquad a = a_3 \sqrt[3]{\frac{T^2}{T_3^2}}$$

$$a = 1a.e.\sqrt[3]{\frac{(11,86200a)^2}{(1200)^2}} = 5,2a.e.$$

Ответ: 5,2 а.е.

Задача 2. Замечено, что противостояния некоторой планеты повторяются через1,1 года. Чему равна большая полуось ее орбиты?

T_M^2

Задача

За какое время Марс совершает полный оборот вокруг Солнца, если он в полтора раза (1,5) дальше, чем Земля.

```
а<sub>земля</sub> =1a.e.

а<sub>марса</sub> =1,5 a.e.

Т<sub>0</sub>=1ч

Тм=? ч
```

РЕФЛЕКСИЯ

Ответьте на следующие вопросы:

Достигли ли вы поставленных целей?

Если да, то что способствовало этому?

Какого рода трудности испытывали?

Подумайте и выразите одним словом чувство, которое вы в данную минуту испытываете, или настроение, в котором вы пребываете здесь и сейчас.

ДОМАШНЕЕ ЗАДАНИЕ ПАРАГРАФ 8 СТР.55-58 № 2,5 Подготовить сообщение Исаак Ньютон

Задачи для самостоятельного решения

- 1. Определите перигелийное расстояние астероида Икар, если большая полуось его орбиты равна 160 млн км, а эксцентриситет составляет 0,83.
- 2. Считая орбиты Земли и Марса круговыми, рассчитайте продолжительность года на Марсе. При решении задачи, необходимо учитывать, что Марс находится дальше от Солнца, чем Земля, в 1,5 раза.