

И звонок каждый шаг Среди ночной прохлады И царственным гербом Горят холодные Алмазные Плеяды В безмолвии ночном.

U.O.

Бунин

Американский физик Ричард Фейнман говорил:

«Поэты утверждают, что наука лишает звёзды красоты. Для неё звёзды- просто газовые шары. Совсем не просто. Я тоже любуюсь звёздами и чувствую их красоту.

Вот только кто из нас

видит больше?»

Тема: «Чем звёзды похожи на людей?».

Цель:

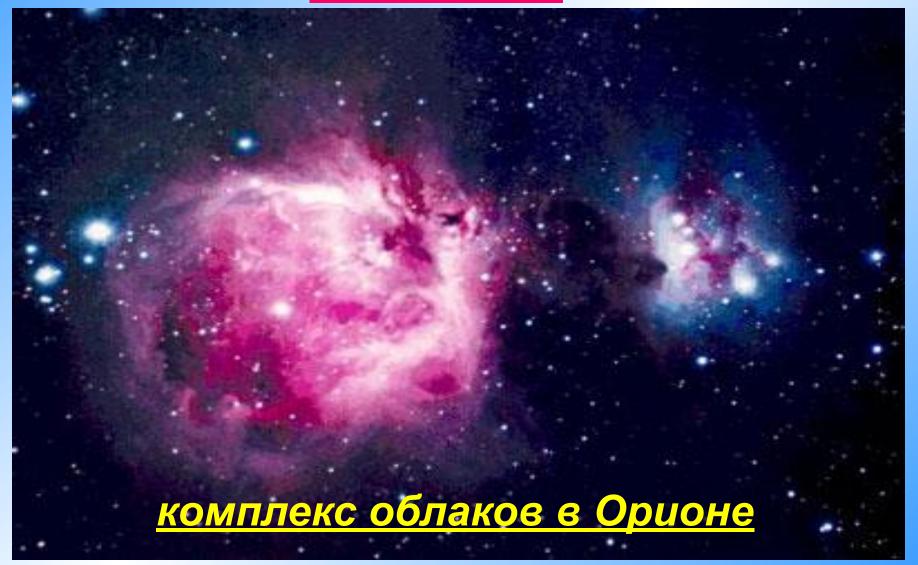
Изучить основные характеристики звезд, эволюцию их жизненного пути, найти сходства между небесными светилами и жителями Земли, людьми.

На Земле главные действующие лица- это <u>люди,</u> а во Вселенной главные объекты звёзды

97% вещества в нашей Галактике сосредоточено в звёздах.

Звезды — это эволюционирующие объекты, т.е. они находятся в постоянном изменении, развитии.

<u>Они, как и люди,</u>


<u>рождаются,</u>

<u>живут и умирают.</u>

Молекулярные облака концентрируется в спиральных рукавах Галактики.

Молекулярное облако- звёздная колыбель.

<u>Рождение протозвезды,</u> <u>гравитационный коллапс</u>

<u>Как только</u> <u>температура в центре</u> протозвезды <u>достигнет 10 000 000 К,</u> <u>начинается ядерный</u> синтез. Сжатие протозвезды <u>останавливается</u> световым давлением, она становится <u>звездой.</u>

Процесс рождения звезды продолжительный. Всё зависит от массы, насколько быстро протозвезда превратится в звезду

Звезды типа Солнца (желтые карлики) тратят на стадию своего рождения 30 000 000 лет

Звёзды в десятеро менее массивные (красные карлики)- 100 000 000 лет.

Звезды в три раза массивнее (голубые гиганты) - 100 000 лет,

Итак, массивные звезды рождаются быстрее, однако маленькие звёзды образуются значительно чаще, чем крупные

Примерно половина звёзд рождаются одиночными; остальные образуют двойные, тройные и более сложные системы. Чем больше компонентов, тем реже встречаются такие системы. Рождение двойняшек и не только также присуще человечеству.

Звёзды существенно отличаются друг от друга, как впрочем и люди.

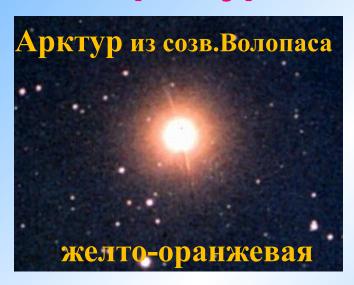
Звёзды различны по

<u>Люди-</u> <u>карлики и гиганты.</u>

Как оказалось, среди сотен тысяч звёзд трудно обнаружить звезды излучающие одинаковые спектры.

Звёзды как и люди – индивидуальны.
И всё же , анализируя звёздные спектры создана Гарвардская сектральная классификация звезд по спектральным классам.

Класс О,В,А — горячие, молодые
Класс F,G — солнечные
Класс К,М — холодные, старые


Гарвардская спектральная классификация звёзд

класс эффективная температура К цвет

O	28000-40000	голубой	
B	10000-28000	бело - голубой	
A	7000–10000	белый	
F	6000-7000	жёлто - белый	
G	5000-6000	жёлтый	
K	3500-5000	оранжевый	O
M	2500–3500	красный	

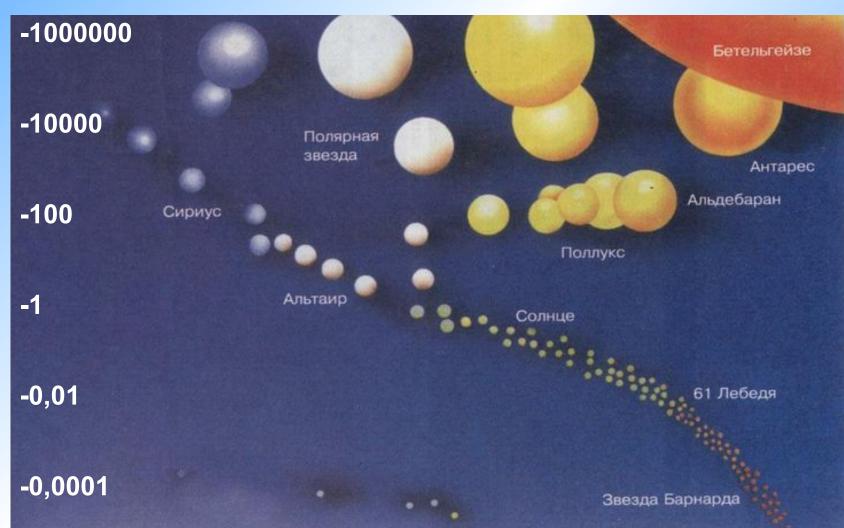
20 000 K 10 000 K 8 000 K 6 000 K 4 000 K 3000 K

<u>Цвет звезды зависит от</u> <u>температуры</u>

У звёзд, благодаря людям, тоже есть собственные имена и фамилии, названия созвездий к которым они принадлежат.

rnacuad

Срок жизни звезды и то, во что она превращается в конце жизненного пути, полностью определяется ее массой


90% звёзд, ближайших к Солнцу, образуют <u>главную последовательность</u> на диаграмме Герцшпрунга-Рассела,

Это то место диаграммы на котором звезда находится большую часть своей жизни.

Диаграмма Герцшпрунга - Рассела.

Температура (К)

30 000 O 20 000 B 10 000 A 7 000 F 6 000 G 4 000 K 3 000 M

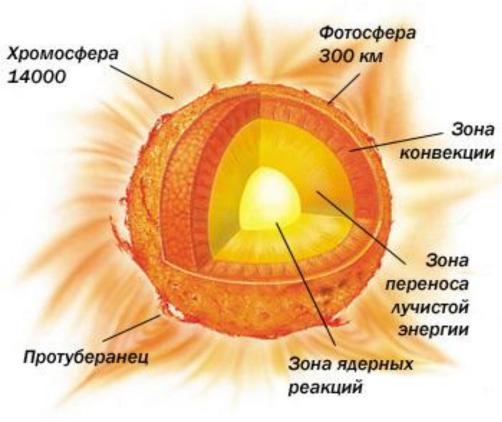
Светимость (Солнце=1)

Характеристика звёзд главной последовательности

Спк	Macca,	Радиус,	Светимост	Время жизни	Темпера-
т.	Мс	RC	ь, LC	на ГП, года	тура, тыс.
кл.					К
В	17-3,2	9-2,8	30 000-100	$8 \cdot 10^6 - 400 \cdot 10^6$	28-10
Α	3,2-1,5	2,8-1,25	100-4,8	400·10 ⁶ -4·10 ⁹	10-7
F	1,5-1,02	1,25-1,2	4,8-1,2	4·10 ⁹ -11·10 ⁹	7-6
G	1,02-0,74	1,02-0,74	1,2-0,35	11·10 ⁹ -17·10 ⁹	6-5
K	0,74-0,31	0,74-0,33	0,35-0,03	17·10 ⁹ -280·10 ⁹	5-3,5

<u>рремя жизни на славнои</u>

последовтельности зависит от массы звезды

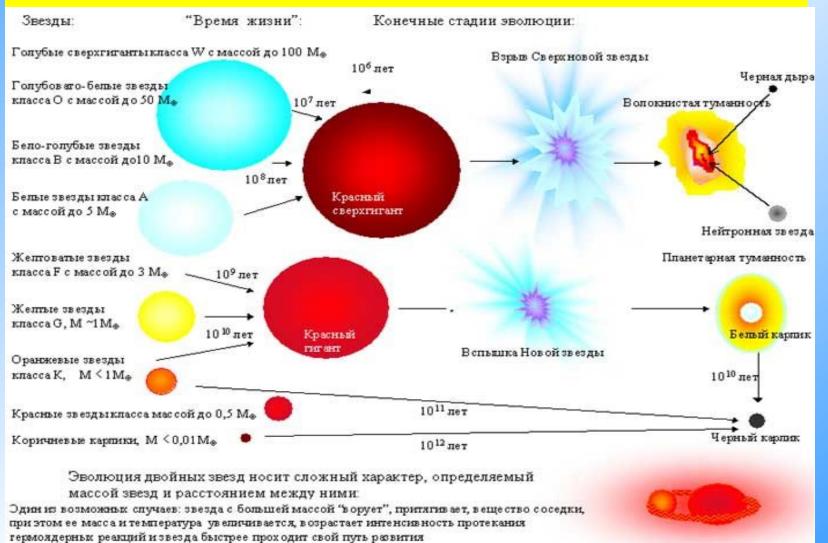

Строение звёзд

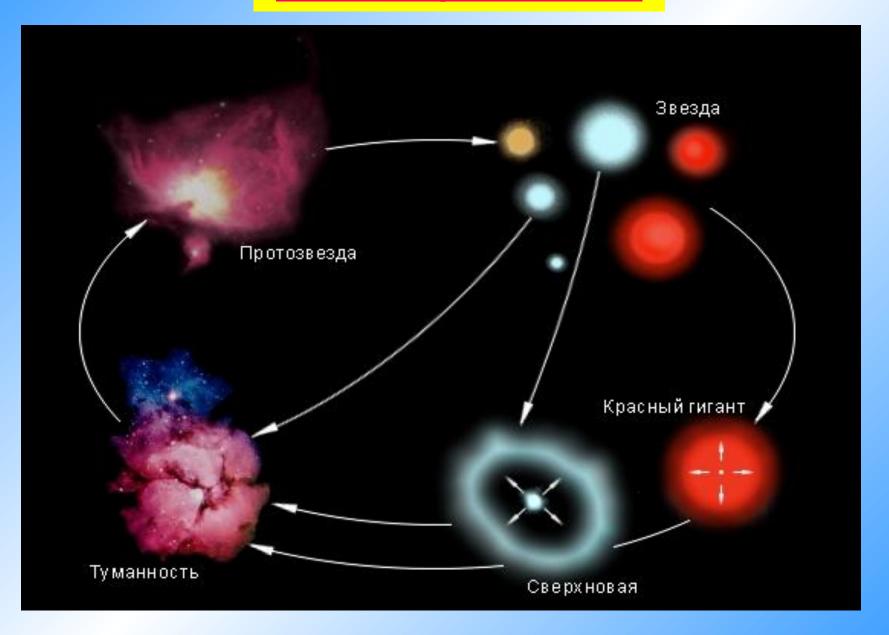


Модель голубого гиганта

Модель красного карлика

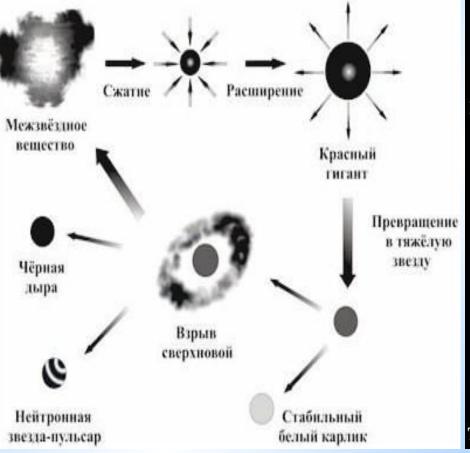
Строение звёзд

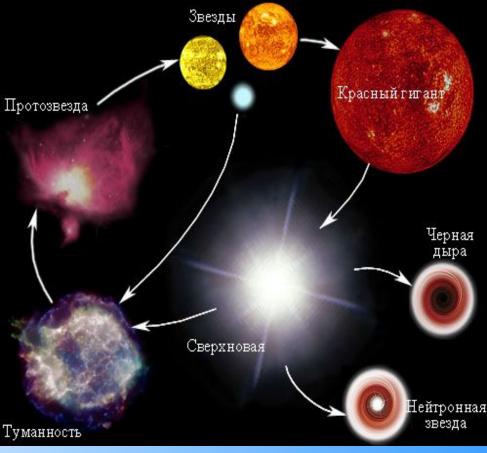



Модель солнца

Модель красного гиганта

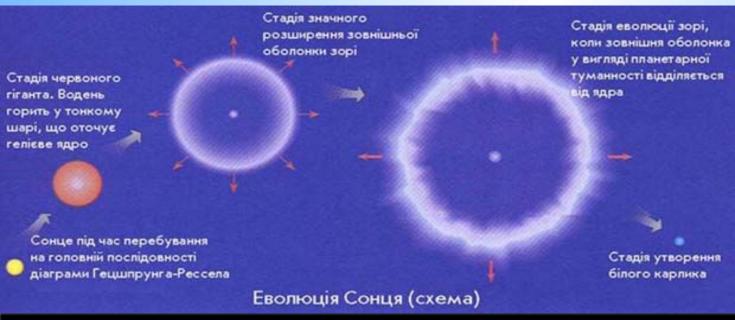
Выход из главной последовательности диаграммы Герцшпруга-Рассела

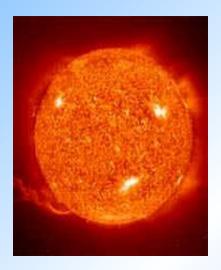

Эволюция звёзд



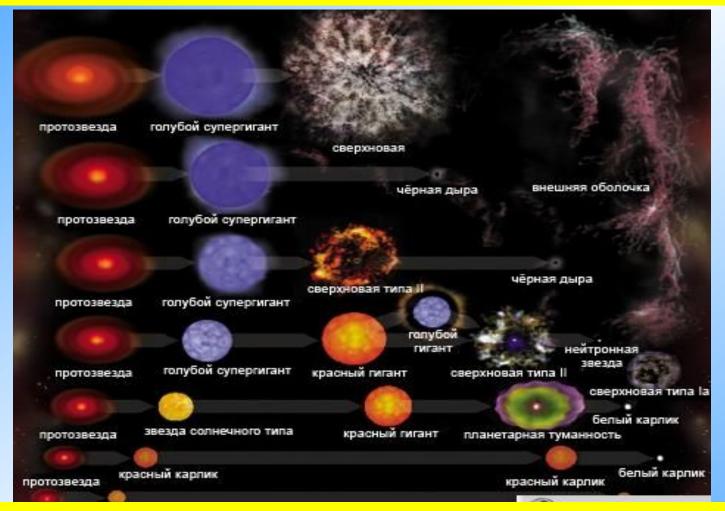
Заключительный этап эволюции звезды

↓ <u>Нейтронная звёзда.</u> <u>Чёрная</u> <u>дыра.</u>





Эволюция нашего светила, Солнца.



<u>У каждой звезды, как у человека свой</u> <u>жизненный путь</u>

Подобно людям они рождаются,

живут и умирают

<u>Надеюсь и вам захотелось</u> <u>узнать о звездах подробнее?</u>

Желаю успеха в поиске ответов на заинтересовавшие вас вопросы!