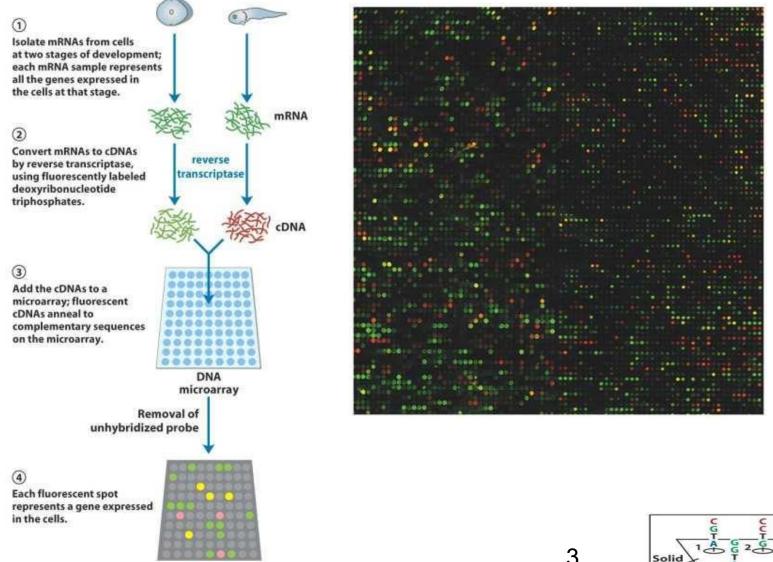
Gene Expression Systems in Prokaryotes and Eukaryotes

- Expression studies
- Expression in Prokaryotes (Bacteria)
- Expression in Eukaryotes

Gene Expression Systems in Prokaryotes and Eukaryotes

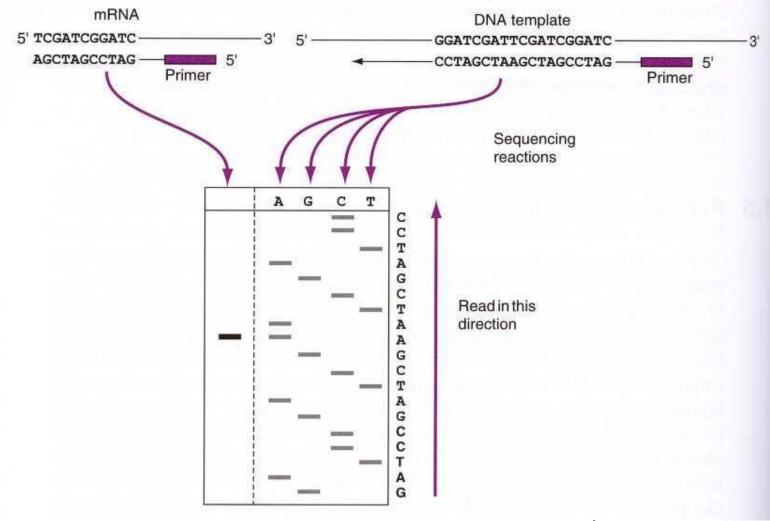

Expression studies:

- 1. Analyzing Transcription
 - Northern blot
 - Micro array
 - real-time PCR
 - Primer extension
- 2. In vivo Expresion studies

Use of report genes to study regulatory elements

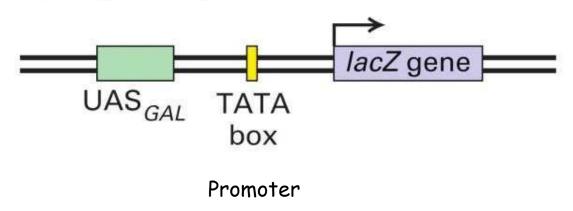
- 3. Analyzing Translation
 - Western blot immuno assays
 - 2D electrophoresis
 - proteomics

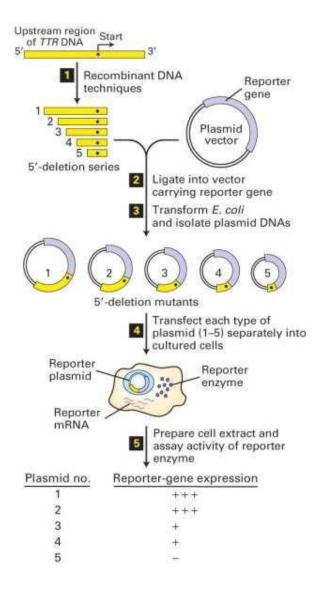
Studying Transcription Microarray technique - DNA chips



surface

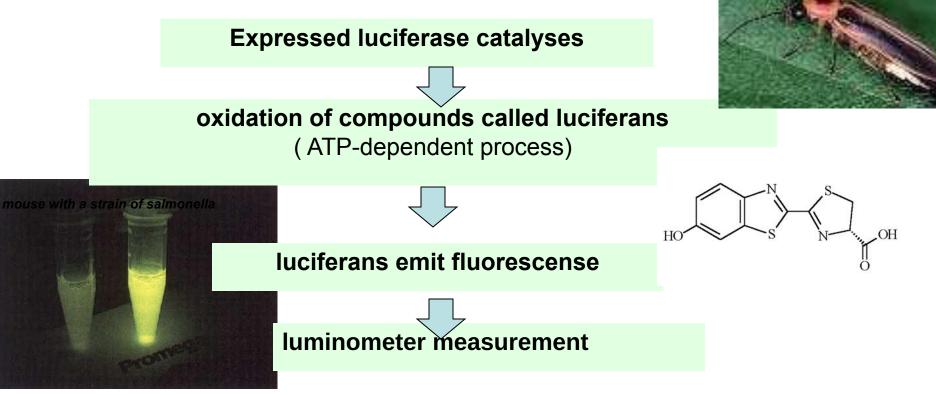
Desired sequences

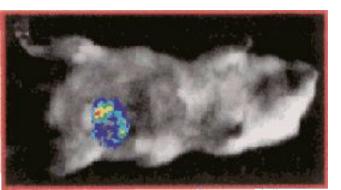

Studying Transcription Primer Extension


Promoter Studies

Used reporter genes:

(a) Reporter-gene construct


Promoter studies by using reporter genes

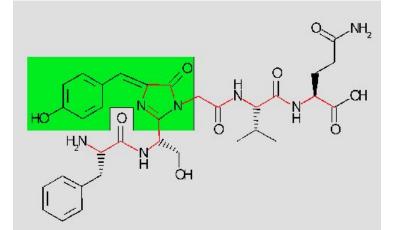


7

Luciferase (luc) systems

firefly species Photinus pyralis

Mice are injected with LUC+ salmonellas. Sensitive digital cameras allow non-invasive detection. For GT vectors pics look the same



Green fluorescent protein (GFP)

autofluorescent protein from Pacific Northwest jellyfish Aequorea victoria

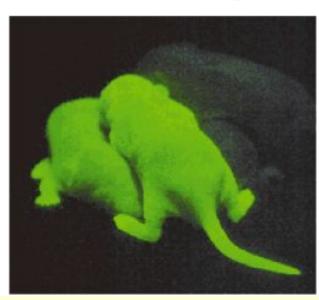
GFP is an extremely stable protein of 238 amino acids with unique post-translationally created and covalently-attached chromophore from oxidised residues 65-67, Ser-Tyr-Gly

ultraviolet light causes GFP to autofluoresce In a bright green color

> Jellyfish do nothing with UV, The activate GFP by aequorin (Ca++ activated, biolumuniscent helper)

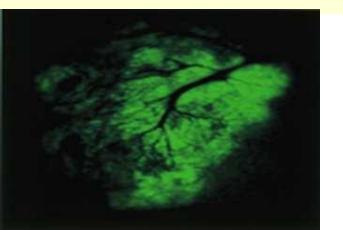
Bioluminescence in Aequoria victoria

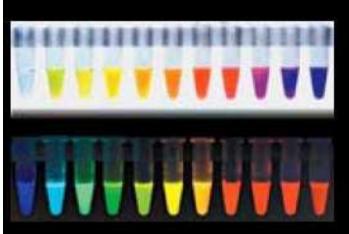
aequorin


green fluorescent protein

GFP expression is harmless for cells and animals

White Light

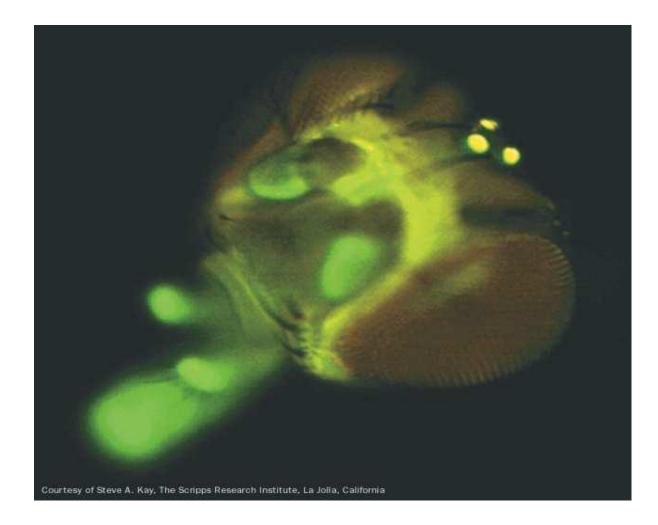

Fluorescent Light


GFP transgenic mice from Osaka University (Masaru Okabe)

GFP construct could be used for construct tracking in living organism

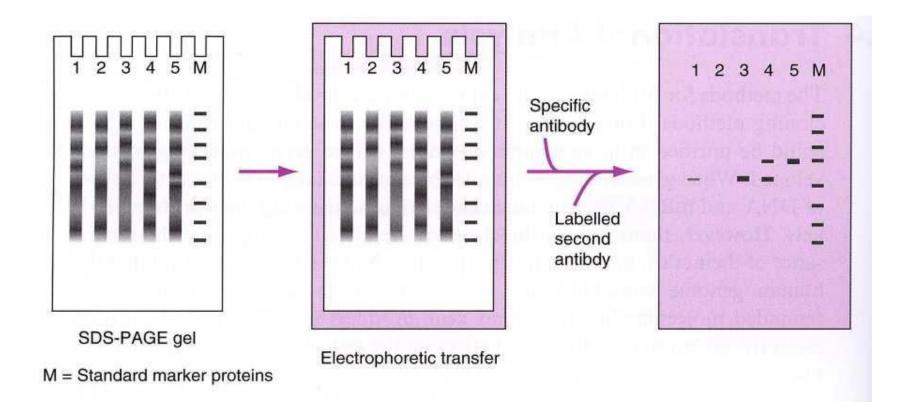
GFP labelled image of a human tumor. Vessel on the tumor surface are visible in black

Many more fluorescent proteins are engineered

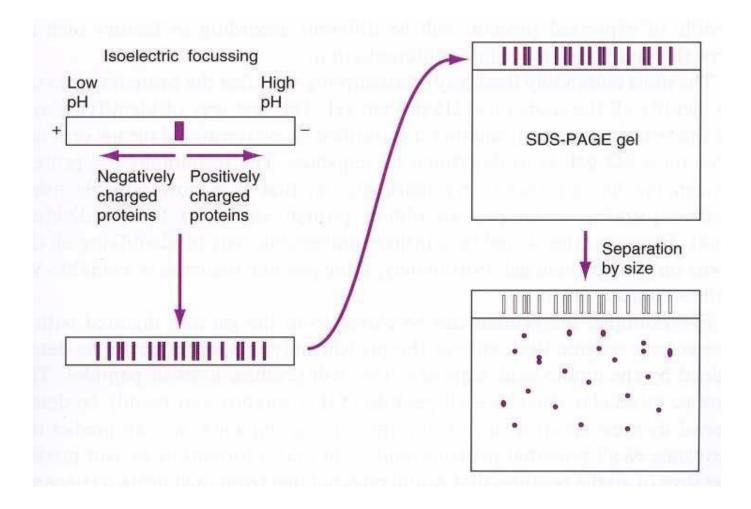

visible fluorescent proteins shown under normal (top) and UV illumination

Chem. & Eng. News, Oct. 25, 2004

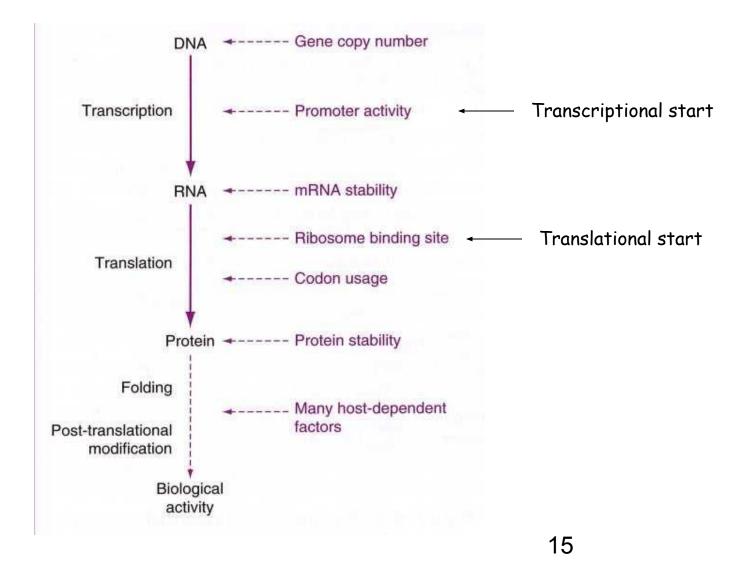
Engineered proteins are covering all the spectrum



San Diego beach scene drawn with living bacteria expressing 8 different colors of fluorescent proteins.



Use of green fluorescent protein (GFP) as a reporter gene ${\scriptstyle \bullet}$


Analyzing Translation - Western Blot

2 D Electrophoresis

Gene Expression

Gene Expression

Gene copy number:

1. Plasmid copy number:

The copy-number of a plasmid in the cell is determined by regulating the **initiation of plasmid replication**.

The initiation of plasmid replication may be controlled by:

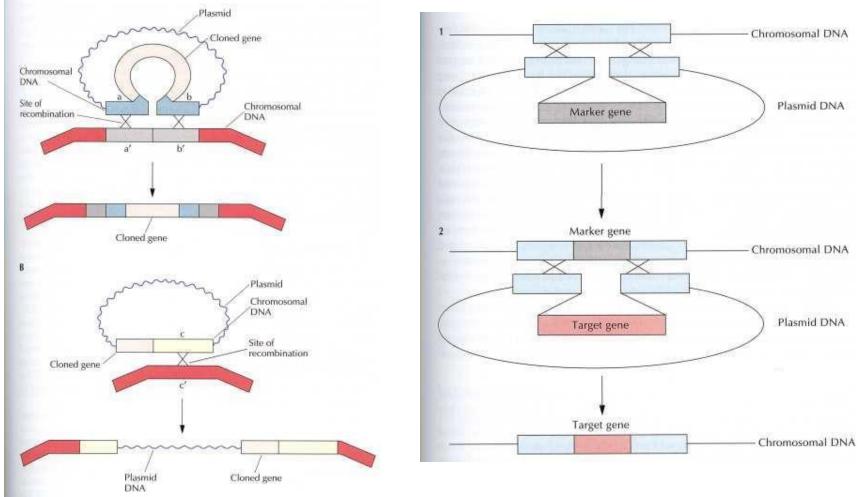
- the amount of available primer (RNA)
- the amount of essential replication proteins
- the function of essential replication proteins.
 - 2. Gene dosage -> number of genes integrated into chromosome
 - prokaryotic systems -> i.e. Transposons, phages, recombinantion
 - mainly eukaryotic systems

	Origin of			
DNA construct	replication	Copy number	Classification	
Plasmids				
pUC vectors	pMB1*	500-700	high copy	
pBluescript [®] vectors	ColE1	300-500	high copy	
pGEM [®] vectors	pMB1*	300-400	high copy	
pTZ vectors	pMB1*	>1000	high copy	
pBR322 and derivatives	pMB1*	pMB1* 15-20		
pACYC and derivatives	p15A	10-12	low copy	
pSC101 and derivatives	pSC101	~5	very low copy	
Cosmids				
SuperCos	pMB1	10–20	low copy	
pWE15	ColE1	10-20	low copy	

Table 1. Origins of Replication and Copy Numbers of Various Plasmids and Cosmids

* The pMB1 origin of replication is closely related to that of ColE1 and falls in the same incompatibility group. The high-copy plasmids listed here contain mutated versions of this origin.

Incompatibility of plasmids:


Not all plasmids are able to coexist in the same cell.

Plasmids which have the same replication control functions are incompatible, and are assigned to the same incompatibility group (inc group).

Plasmids of one incompatibility group are related to each other, but cannot survive together in the same bacterial cell, as only different kinds of plasmids are compatible.

Ensures that we can make libraries -> just one plasmid taken up by one cell

Homologous integration into chromosome

Insertion on Bacillus subtilis chromosome

Protein expression in prokaryotic systems

Vector preparation Transformation Induction Screening & selecting Protein Expression

So, this new story would be about vectors again.

Bacterial expression vectors have some distinct features:

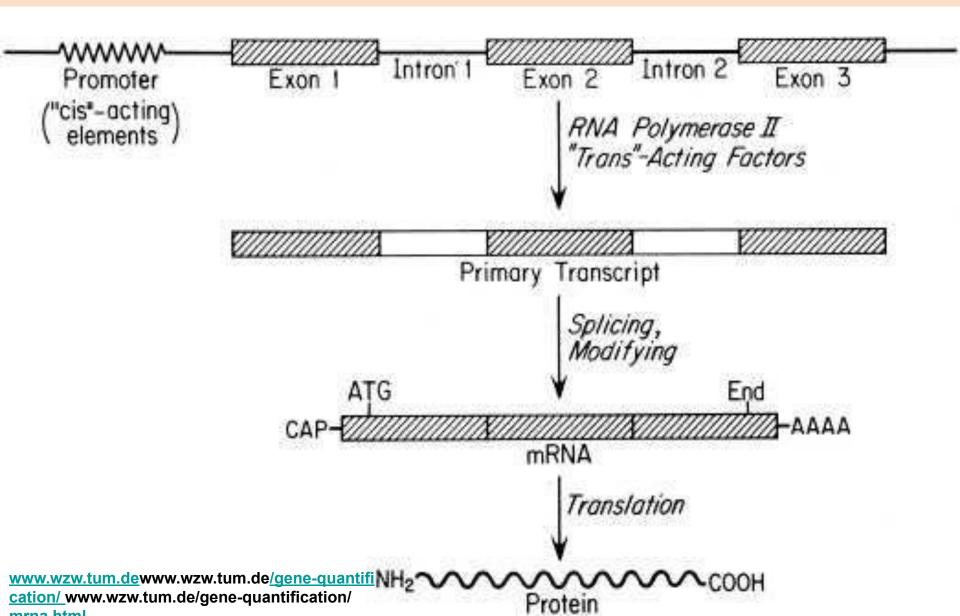
Inducible promoter systems;

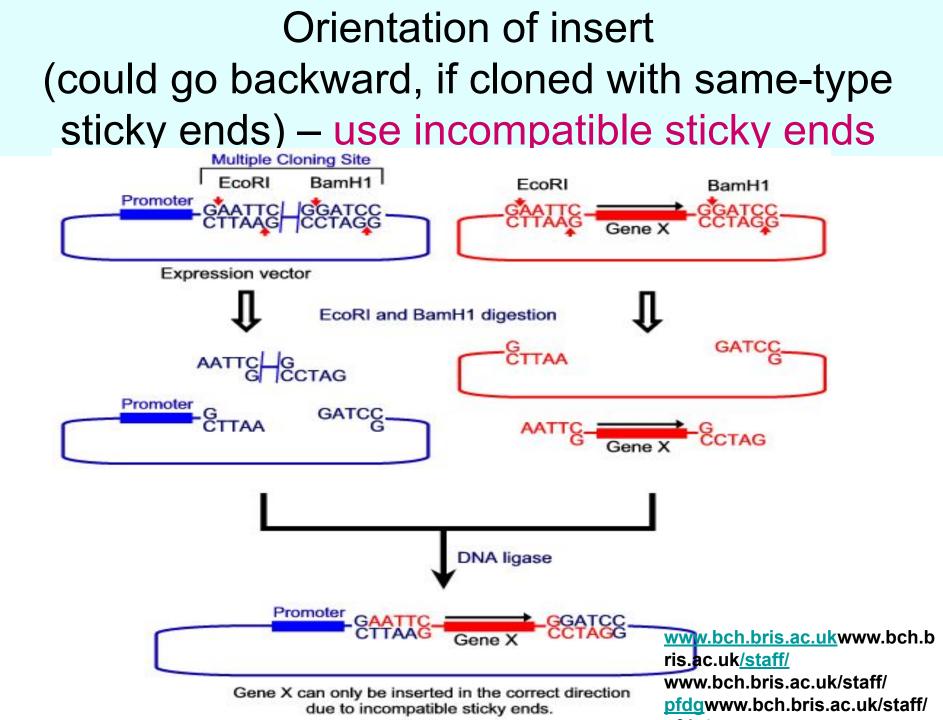
Protein fusions including fused tags;

19 www.qiagen.com General advices for one who wants to produce gene expression in prokaryotes

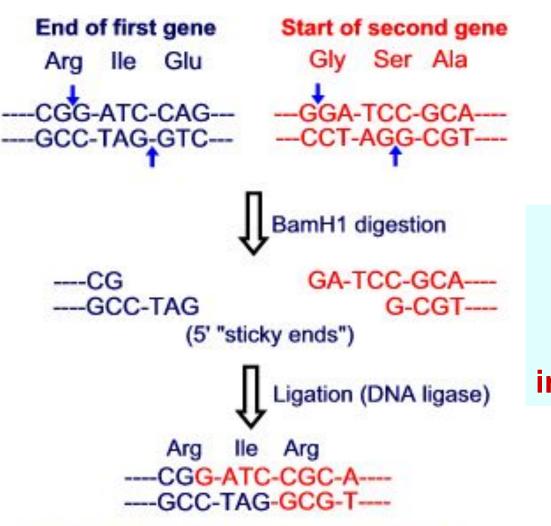
Most obvious and common mistakes:

1. Do not forget to cut out the intron


2. Check orientation of insert

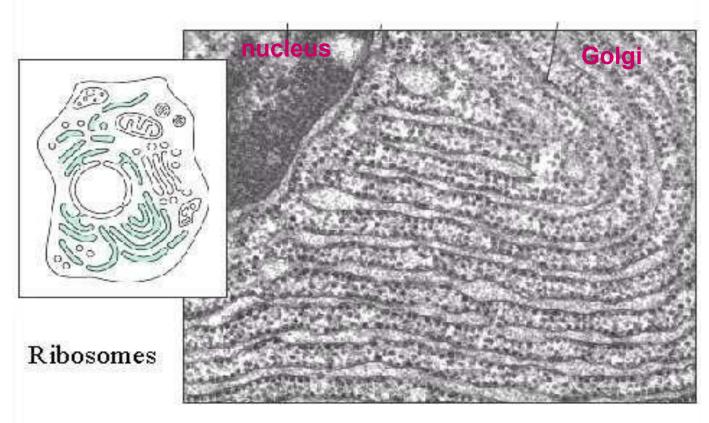

3. Do fusions with something In-frame

4. No Post-translation modification = no product activity


Introns

Not an issue when you clone a cDNA

Fusion proteins.



The second gene is not in the same reading frame as the first and is incorrectly expressed. When expressing a fusion proteins, ensure that both of them are in the same reading frame

> www.bch.bris.ac.uk ris.ac.uk/staff/ www.bch.bris.ac.uk/staff/ pfdgwww.bch.bris.ac.uk/staff/ pfdg/

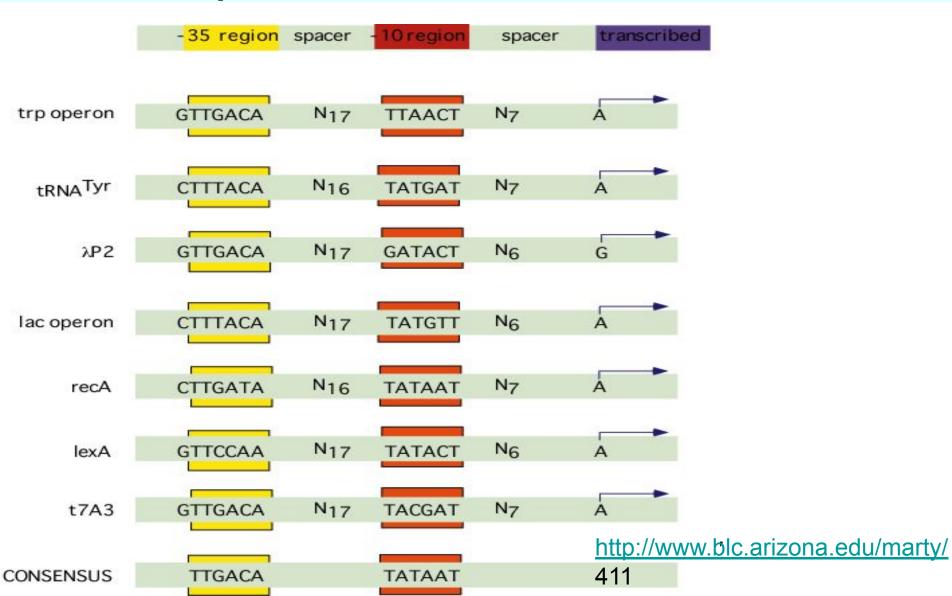
PostTranslational modification

Eukaryotic cells have Golgi system Prokaryotic cells do not have it

Synthesis of secreted and membrane proteins

Efficiency of expression in E.coli Dependent of:

- 1. Type of transcription promoter and terminator
 - 2. Affinity of mRNA and prokaryotic ribosome
- 3. Amount of copies of transgene and its localization (chromosome or plasmid)
 - 4. Cellular localisation of the protein end-product
 - 5. Efficiency of translation in the host organism
 - 6. Stability of protein product in the host organism

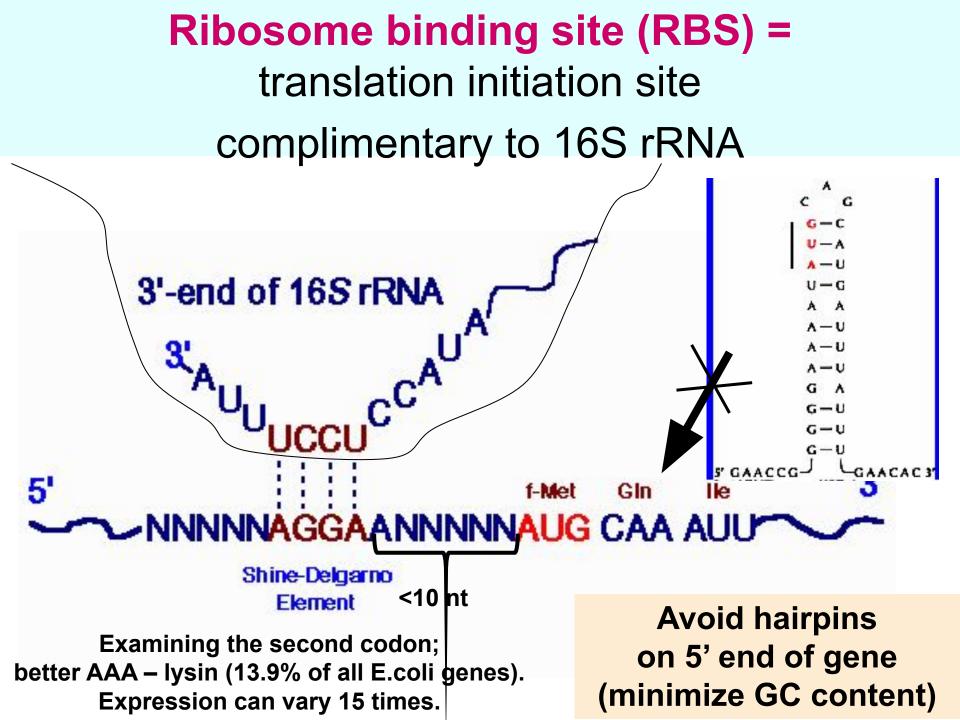

Systems could be optimized on gene to gene basis. No universal strategy possible

Factors affecting transcription

1. Promoters (including regulated ones) PROKARYOTIC!!!!

2. Terminators PROKARYOTIC!!!!

Variations between prokaryotic promoters are minimal



Factors affecting translation

1. Ribosome binding site (RBS)

2. Codon bias

3. Stability of the transcript

Codon Usage in E. coli & humans

Codon	Amino acid	Frequency of use in:		
		E. coli	Humans	
GAG	Glutamic acid	0.30	0.59	
GAA	Glutamic acid	0.70	0.41	
CGG	Arginine	0.08	0.19	
CGA	Arginine	0.05	0.10	
CGU	Arginine	0.42	0.09	
CGC	Arginine	0.37	0.19	
AGG	Arginine	0.03	0.22	
AGA	Arginine	0.04	0.21	
CCG	Proline	0.55	0.11	
CCA	Proline	0.20	0.27	
CCU	Proline	0.16	0.29	
CCC	Proline	0.10	0.33	
UGA UAG UAA	Stop Stop	0.30 0.09 0.62	0.61 0.17 0.22	

Codon Optimization Strategies

- Chemically synthesize new gene
 - Alter sequence of the gene of interest
 to match donor codons to the codons
 most frequently used in host organism
- Express in different host
 - choose host with better matching codon usage
- Use an engineered host cell

that overexpresses low abundance tRNAs

Commercial *E. coli* strains encode for a number of the rare codon genes

BL21 (DE3) CodonPlus-RIL (AT-rich compatible)

arginine (**AGG**, **AGA**), isoleucine (**AUA**) and leucine (**CUA**)

BL21 (DE3) CodonPlus-RP (GC-rich compatible)

arginine (**AGG**, **AGA**) and proline (**CCC**)

(AT-rich compatible) Rosetta or Rosetta (DE3) AGG/AGA (arginine), CGG (arginine), AUA (isoleucine) CUA (leucine)CCC (proline), and GGA (glycine)

Mitochondria and chloroplast genes

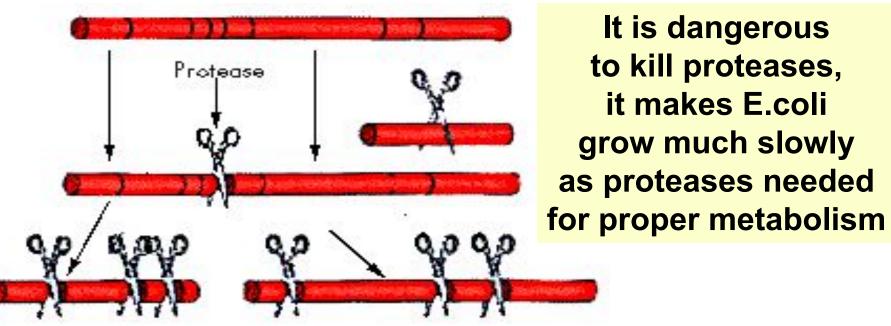
Alterations in the Standard Genetic Code in Mitochondria

			Mitochondria			
CODON	Standard <u>Code:</u> Nuclear-En coded	Mammals	Drosophila	Neurospora	Yeasts	Plants
UGA AGA, AGG	Proteins Stop Arg	Trp Stop	Trp Ser	Trp Arg	Trp Arg	Stop Arg
AUA	Ile	Met	Met	Ile	Met	Ile
AUU	Ile	Met	Met	Met	Met	Ile
CUU,	Leu	Leu	Leu	Leu	Thr	Leu
CUC, CUA, CUG					33	

Factors affecting protein stability

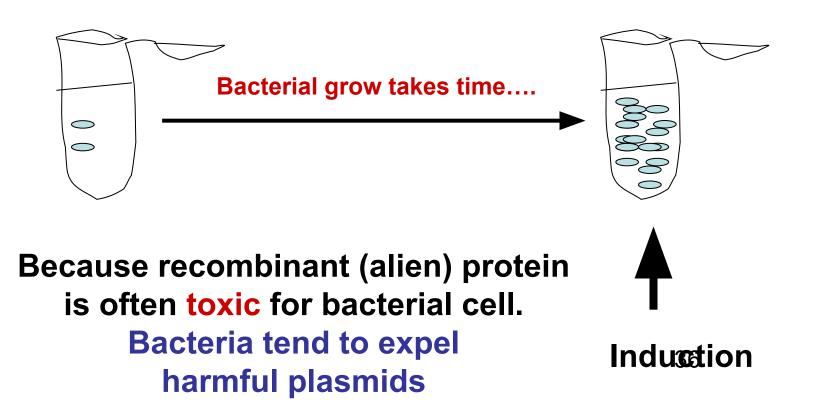
1. Overall level of protease activity in bacterial cells

2. N-terminal amino acid affects protein half-life

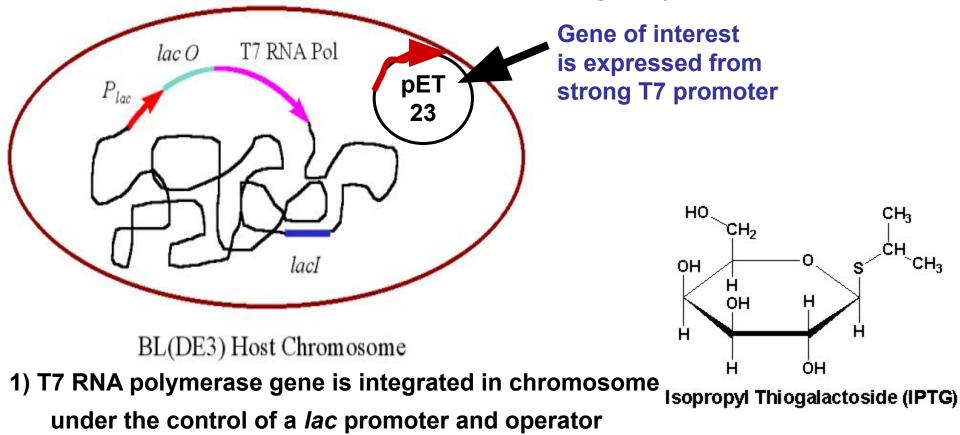

3. Internal regions containing clusters of certain amino acids can increase proteolysis

- P proline
- E glutamic acid
- S serine
- **T** threonine

.... Mutate PEST aminoacids....


Protease-deficient host strains

BL21, the work horse of *E. coli* expression, is deficient in two proteases encoded by the *lon* (cytoplasmic) and *omp*T (periplasmic) genes.

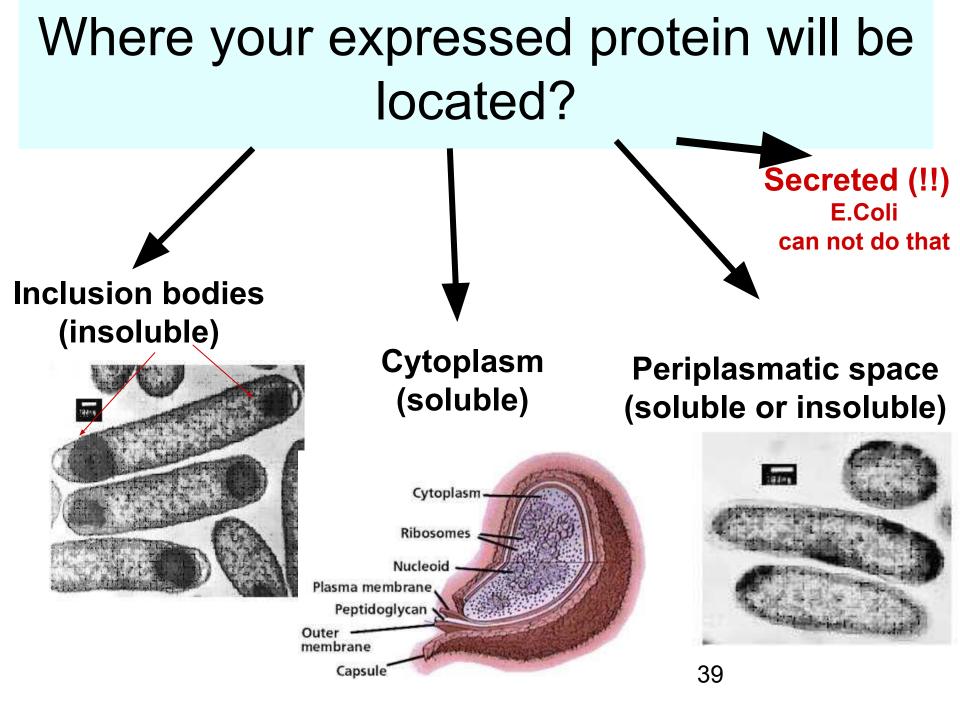


Inducible bacterial promoters

Why not to use constitutive, always strong promoter?

BL(DE3) inducible system and pET vectors (invented in 1984 by Bill Studier, on sale by Novagen)

- 2) lactose analogue, IPTG, causes the host to produce T7 RNA polymerase
- 3) The *E. coli* host genome also carries the *lacl* (repressor) gene


Why repressor gene and gene of interest are expressed from different DNA molecules?

Repressor gene expressed from chromosome; Gene of Interest expressed from plasmid

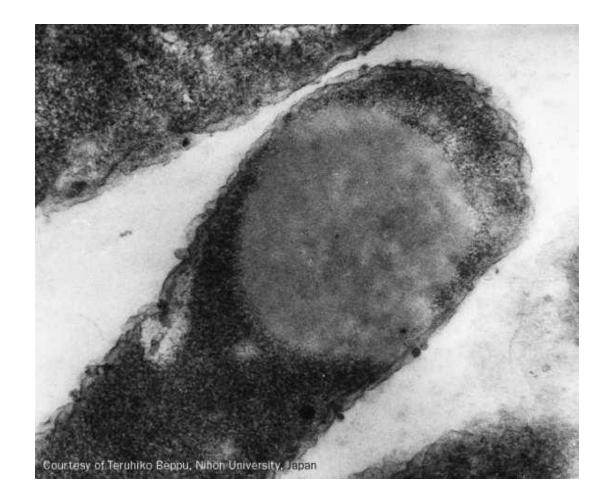
If too high repressor
no transcription
(you need to increase expensive IPTG)

If too low repressor
promoter is leaky
(active without IPTG)

Repressor is in chromosome, because there it is best kept controlled there (no plasmid loss, not too high expression)

1. Inclusion bodies (most common case)

-- Inclusion bodies are formed through the accumulation of folding intermediates


rather than from the native or unfolded proteins.

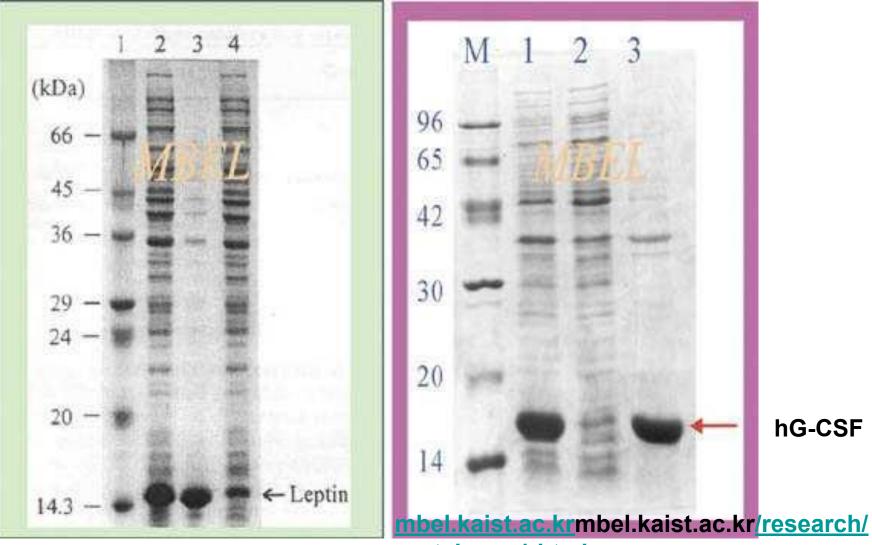
-- It is not possible to predict which proteins will be produced as inclusion bodies.

-- Production of inclusion bodies not dependent on the origin of protein, the used promoters, the hydrophobicity of target proteins...

Protein Folding

Electron micrograph of an inclusion body of the protein prochymosin in an *E. coli* cell 41

Good side of inclusion bodies


1) inclusion bodies can be accumulated in the cytoplasm to much higher level (greater than 25%) than production as soluble form;

2) inclusion bodies is initially isolated in a highly purified, solid, and concentrated state by simple physical operation (centrifugation).

3) inclusion bodies have no biological activity. For toxic proteins it may be the only one available;

4) inclusion bodies are resistant to proteolysis That results in the high yield of protein production.

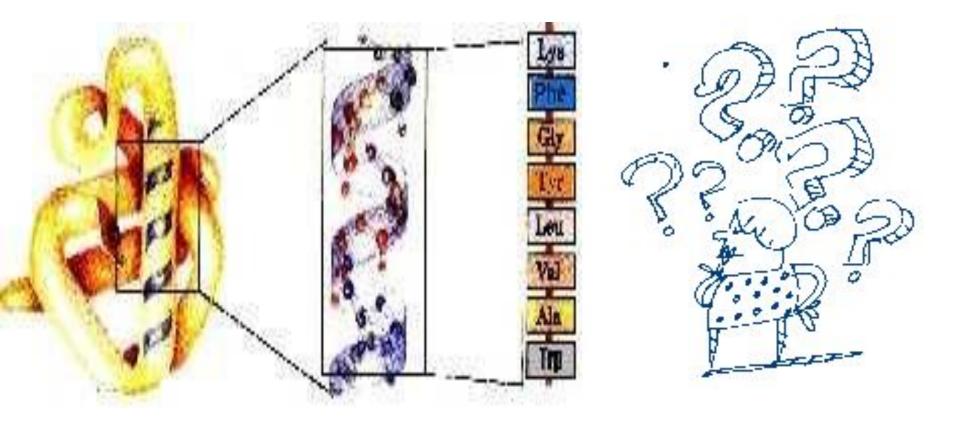
SDS-PAGE analysis of recombinant protein produced as inclusion body

nrotein en1 html

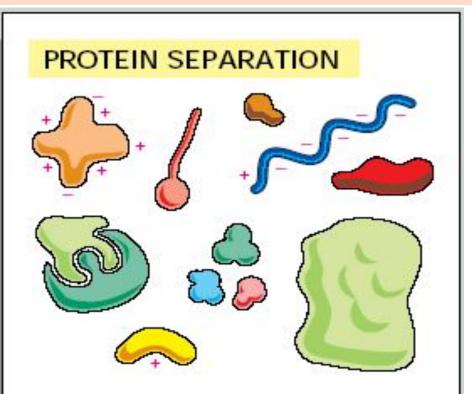
Recovery of proteins from inclusion bodies

Is not a straightforward process, but road of trials and errors

Refolding


Choice of solubilizing agents, e.g., urea, guanidine HCI, or detergents, plays a key role in solubilization efficiency Hal Guandinium Urea

-- Refolding is initiated by reducing concentration of denaturant used to solubilize IBs.


-- Refolding competes with other reactions, such as misfolding and aggregation (both are leading to bad results)

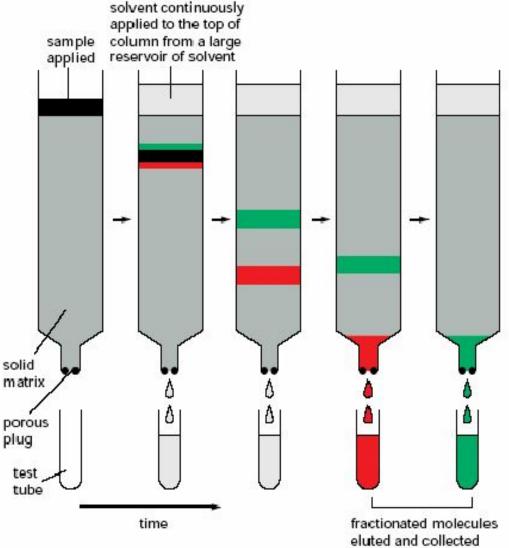
-- Chaperones are helpful in refolding (including chemical chaperones)

Question of questions – how to purify your protein?

Diversity of proteins could be exploited

Proteins are very diverse. They differ by size, shape, charge, hydrophobicity, and their affinity for other molecules. All these properties can be exploited to separate them from one another so that they can be studied individually.

Column chromatography

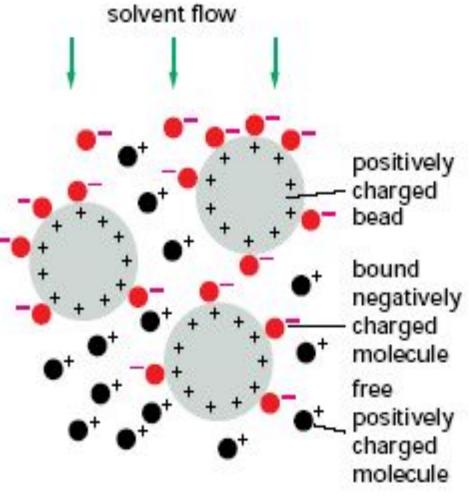

Matrix particles usually packed in the column in the form of small beads.

A protein purification strategy might employ in turn each of the three kinds of matrix described below,

with a final protein purification Of up to 10,000-fold.

Essential Cell Biology:46 An Introduction to the Molecular Biology of the Cell

Column chromatography

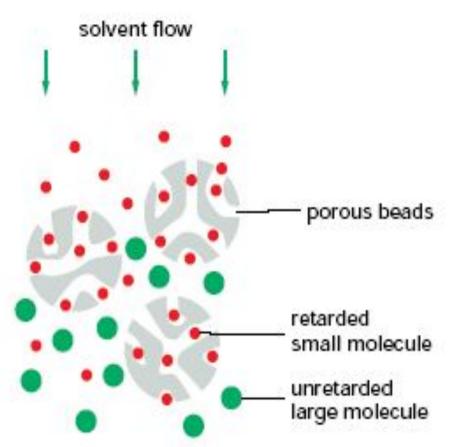

Different proteins are retarded to different extents by their interaction with the matrix, they can be collected separately as they flow out from the bottom.

According to the choice of matrix, proteins can be separated according to

- -- their charge,
- -- their hydrophobicity,
- -- their size,
- -- their ability to bind to particular chemical groups (!!)

An Introduction to the Molecular Biology of the Cell

(A) ION-EXCHANGE CHROMATOGRAPHY


Ion-exchange columns are packed with small beads that carry positive or negative charges retarding proteins of the opposite charge.

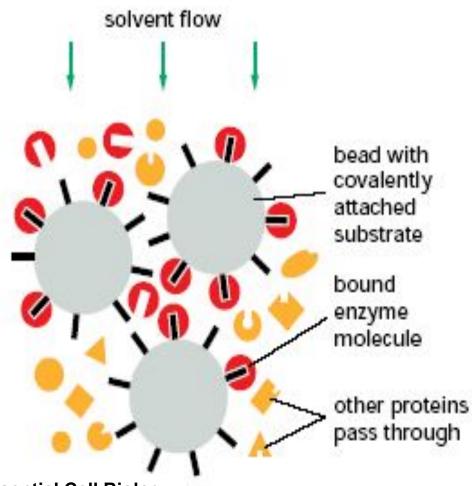
The association between a protein and the matrix depends on the pH and ionic strength of the solution passing down the column.

These can be varied in a controlled way to achieve an effective separation.

Essential Cell Biology: An Introduction to the Molecular Biology of the Cell

(B) GEL-FILTRATION CHROMATOGRAPHY

Gel-filtration columns separate proteins according to their size on tiny porous beads.

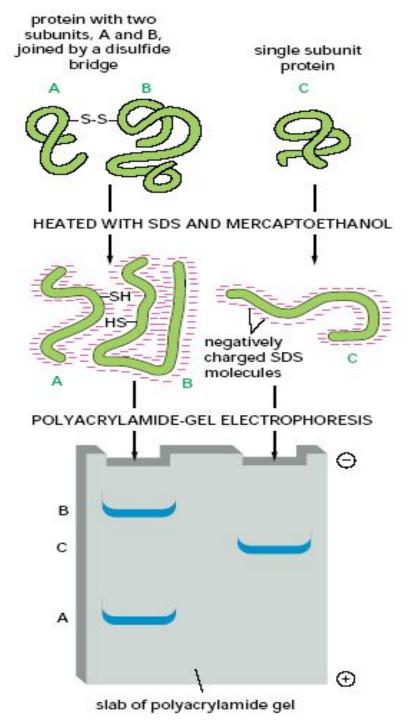

Protein molecules that are small enough to enter the holes in the beads are delayed and travel more slowly through the column.

Proteins that cannot enter the beads are washed out of the column first.

Such columns also allow an estimate of protein size.

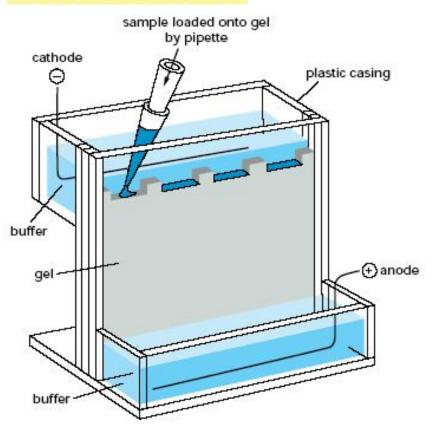
Essential Cell Biology: An Introduction to the Molecular Biology of the Cell

(C) AFFINITY CHROMATOGRAPHY

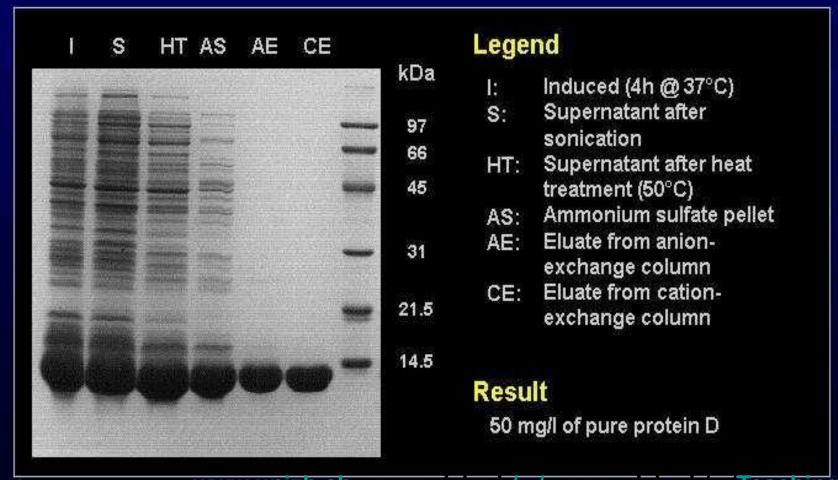

Affinity columns

contain a matrix covalently coupled to a molecule that interacts specifically with the protein of interest

(e.g., an antibody, or an enzyme substrate).


Proteins that bind specifically to such a column can finally be released by a pH change or by concentrated salt solutions, and they emerge highly purified.

Essential Cell Biology: An Introduction to the Molecular Biology of the Cell

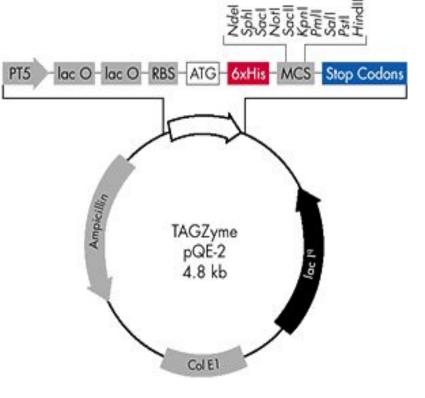

Protein electrophoresis

GEL ELECTROPHORESIS

Essential Cell Biology:51 An Introduction to the Molecular Biology of the Cell

Expression and Purification of Protein D

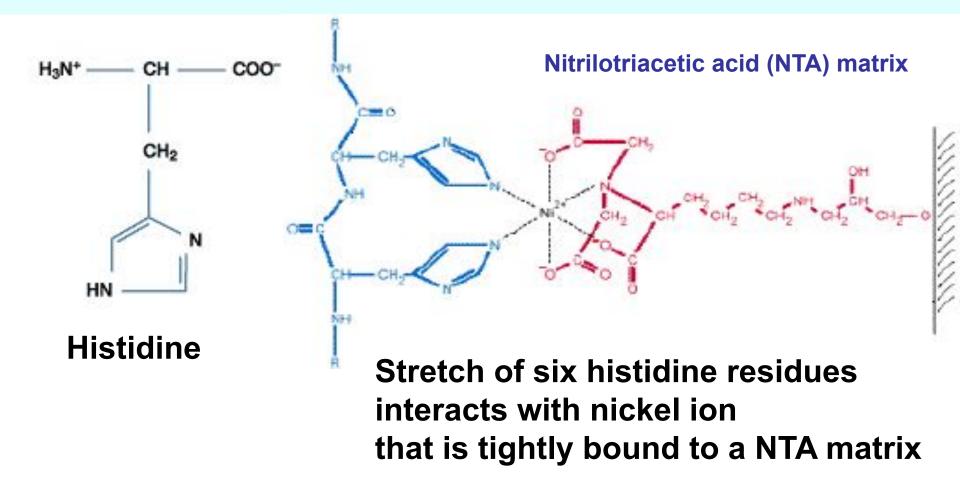
www.unizh.chwww.unizh.ch/.../www.unizh.ch/.../Teaching_sli de_showswww.unizh.ch/.../Teaching_slide_shows/


Fusion proteins

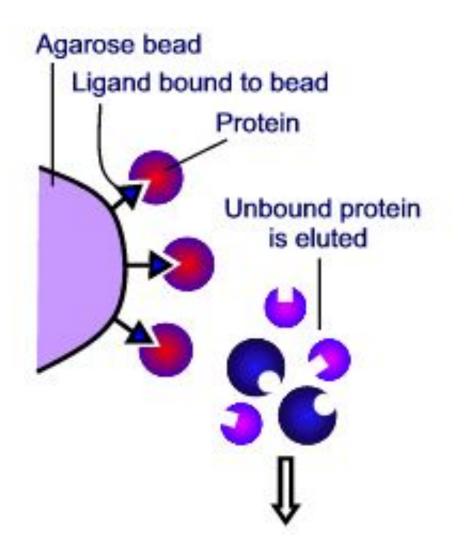
- increase production level
- facilitate purification (taq)
- detection of expression (GFP fusion)
- Redirection of proteins (secretion -> signal peptidases)
- Surface display (for screening of libraries)
- Tandem arrays (for small peptides, toxic proteins,..)

Most widely used purification strategy – to produce your protein as a fusion with something easily purifyable

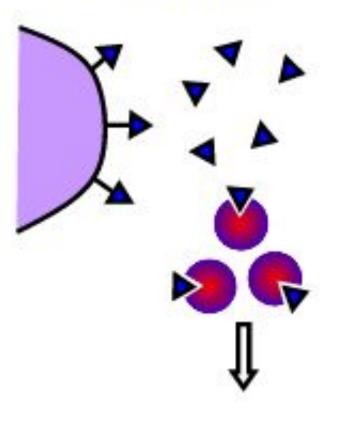
6xHIS Tag


(Invitrogen, Life Technologies, Novagen, QIAGEN):

1. This small addition rarely affects protein structure to a significant degree


2. Interaction so strong, it tolerates denaturing conditions (could be used for inclusion bodies purification) 54

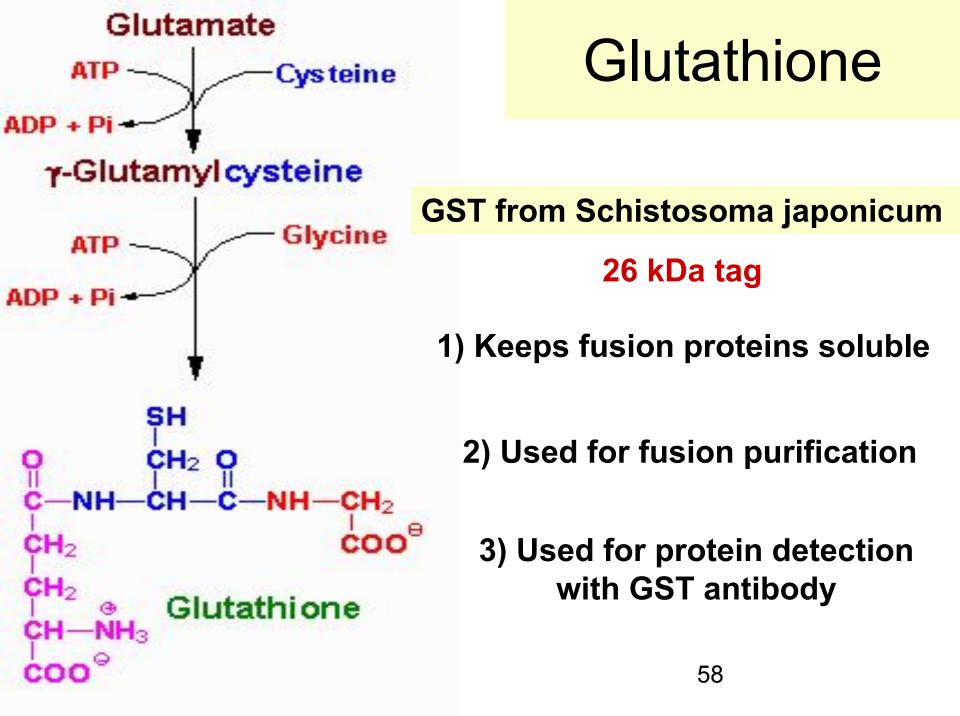
Histidine: a charged aminoacid



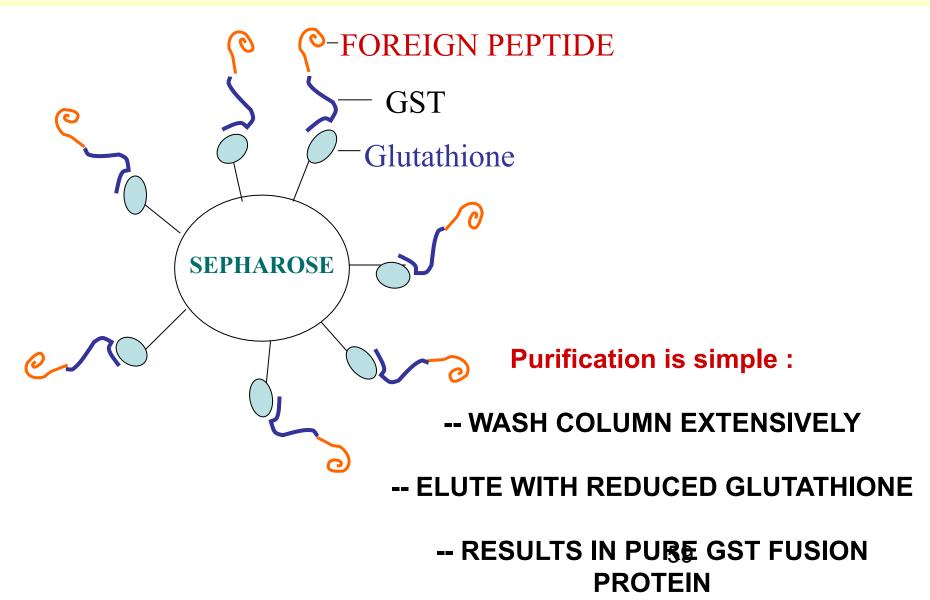
The affinity of this interaction is very high which allows protein purification to 95% in a single step.

GST – fusion. Principle is the same. Binds to glutation

Protein bound to free ligand is eluted


FUNCTIONS OF GST

CATALYTIC FUNCTIONS: binding to glutathione


- Glutathione S-transferase activity
- Glutathione Peroxidase II activity

GSTs function catalytically to conjugate glutathione (GSH) with a wide variety of electrophilic substrates

- Reversible biding and transport of several organic compounds
- Irreversible binding and transport of several electrophilic compounds including some carcinogen

FUSION PROTEIN BOUND TO GLUTATHIONE SEPHAROSE

Organism	AGG arginine	AGA arginine	CUA leucine	AUA isoleucine	CCC proline	GGA glycine
Bacterial hosts						
Escherichia coli B	2.1	2.4	3.4	5.0	2.4	8.2
E. coli K12	1.2	2.1	3.9	4.3	5.5	7.9
Anaba ena sp.	2.6	8.3	14.0	8.3	13.0	12.4
Bacillus megaterium	2.7	9.1	10.9	10.3	2.9	26.2
Bacillus subtilis	3.9	10.5	4.8	9.3	3.3	21.8
Caulobactert crescentus CB 15	2.2	0.8	1.4	0.6	18.7	4.3
Methylobacterium extorquens	1.2	0.6	0.8	0.3	18.7	3.7
Staphylococcus carnosus	0.4	7.9	4.6	9.8	0.8	16.7
Streptomyces lividans	4.0	1.1	0.6	0.8	22.7	6.5
Some organisms						
Arabidopsis thaliana	10.9	18.9	9.9	12.6	5.3	24.2
Caenorhabditis elegans	4.0	15.4	7.9	9.4	4.4	31.6
Clostridium tetani E88	5.0	25.5	11.2	67.4	1.8	34.6
Drosophila melanogaster	6.3	5.2	8.2	9.5	18.0	17.7
Homo sapiens	11.9	12.0	7.2	7.4	19.9	16.5
H. sapiens Mitochondriom	0.4	0.4	70.4	44.5	33.9	18.9
Plasmodium falciparum	3.3	17.0	5.3	40.8	3.0	20.0
Pichia pastoris	6.6	20.2	10.9	11.7	6.7	19.1
Picrophilus torridus DSM9790	22.9	16.2	7.8	30.3	2.6	18.1
Saccharomyces cerevisiae	9.3	21.3	13.4	17.8	6.8	10.9

Table 2b Comparison of rare codons in E. coli

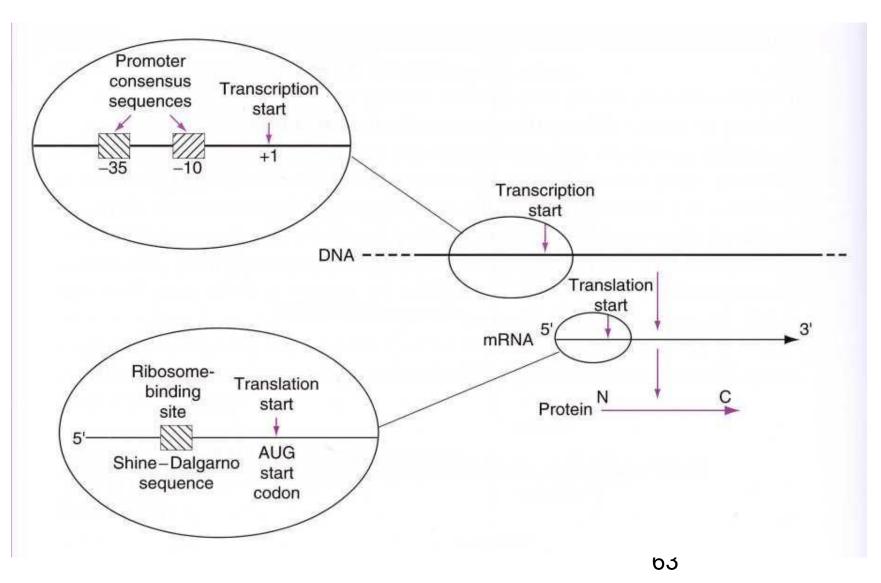
The codon usages of bacteria used for heterologous protein expression and some organisms are listed (for *Bacilus brevis* not available). Codon frequencies are expressed as codons used per 1,000 codons encountered. The arginine codons AGG and AGA are recognized by the same tRNA and should therefore be combined. Codon frequency of more than 15 codons/1,000 codons may cause problems for high-level expression in *E. coli*. A complete summary of codon usages can be found at http://www.kazusa.or.jp/codon/

Some problems of production in E. coli

Symptom	Possible problem	A collection of solutions
Cell death or no colonies	Toxic protein, high basal	More stringent control over basal expression
	expression	Tightly controlled promoter system
		Weaker promoter
		Lowering temperature
		Lowering inducer concentration
Insoluble disulfide protein	Reduction of disulfide bonds	Minimize reduction in cytoplasm
(inclusion bodies)		Accumulation in the periplasm
Insoluble protein (inclusion bodies)	Too much expression	Attenuate expression by: weaker promoter, lowering temperature, lowering inducer concentration, decrease plasmid copy number, fusion of a hydrophilic
		affinity tag
No activity	Misfolded protein, affinity tag can decrease activity	Minimize reduction in cytoplasm
		Accumulation in the periplasm
		Attenuate expression
		Change affinity tag
No protein, truncated	E. coli codon usage	Supply rare tRNAs
protein	(codon bias)	Stronger promoter
		Increase plasmid copy number
		Lower temperature
		Tightly controlled promoter system

Table 2a Some problems of heterologous protein production in E. coli and possible solutions

Nevertheless, another bacterial host than E. coli could also solve the problem


Some E.coli expression host considerations

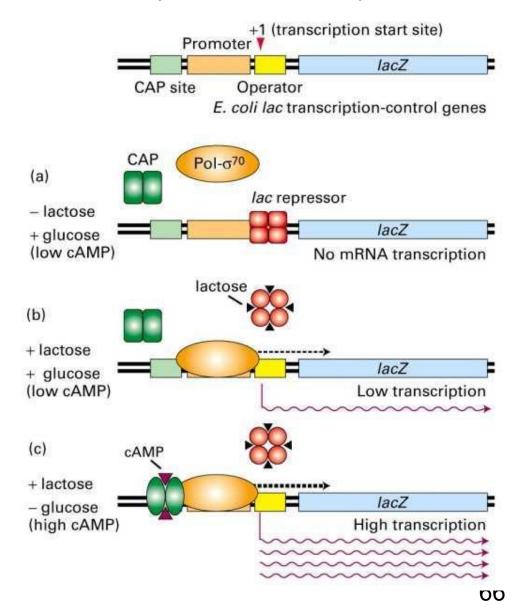
E. coli strain	Derivation	Key features
AD494	K-12	trxB mutant; facilitates cytoplasmic disulfide bond formation
BL21	B834	Deficient in lon and ompT proteases
BL21 trxB	BL21	trxB mutant; facilitates cytoplasmic disulfide bond formation; deficient in lon and ompT proteases
BL21 CodonPlus-RIL	BL21	Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AGG, AGA, AUA, CUA; deficient in lon and ompT proteases.
BL21 CodonPlus-RP	BL21	Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AGG, AGA, CCC; deficient in lon and ompT proteases.
BLR	BL21	recA mutant; stabilizes tandem repeats; deficient in lon and ompT proteases
B834	B strain	Met auxotroph; 35S-met labeling
C41	BL21	Mutant designed for expression of membrane proteins
C43	BL21	Double mutant designed for expression of membrane proteins
HMS174	K-12	recA mutant; Rif resistance
JM 83	K-12	Usable for secretion of recombinant proteins into the periplasm
Origami	K-12	trxB/gor mutant; greatly facilitates cytoplasmic disulfide bond formation
Origami B	BL21	trxB/gor mutant; greatly facilitates cytoplasmic disulfide bond formation; deficient in Ion and ompT proteases
Rosetta	BL21	Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AUA, AGG, AGA, CGG, CUA, CCC, and GGA; deficient in lon and ompT proteases
Rosetta-gami	BL21	Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AUA, AGG, AGA, CGG, CUA, CCC, and GGA; deficient in <i>Ion</i> and <i>ompT</i> proteases; <i>bxB/gor</i> mutant; greatly facilitates cytoplasmic disulfide bond formation

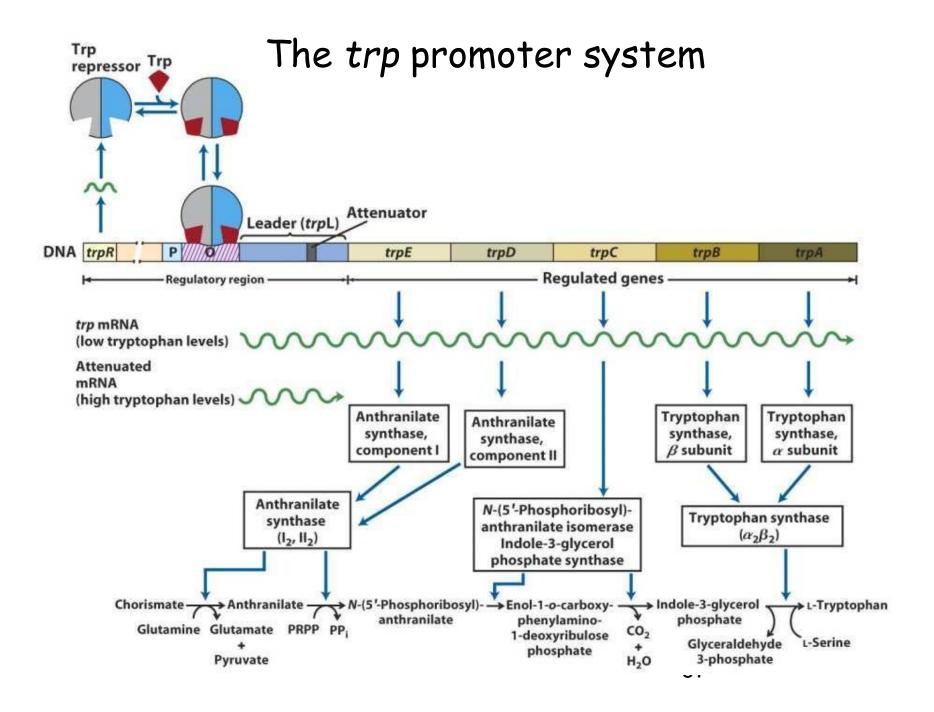
Table 1 Some E. coli strains most frequently used for heterologous protein production and their key features

Most strains are also available as DE3 and DE3 pLysS strains. Strains are commercially available from different manufacturers

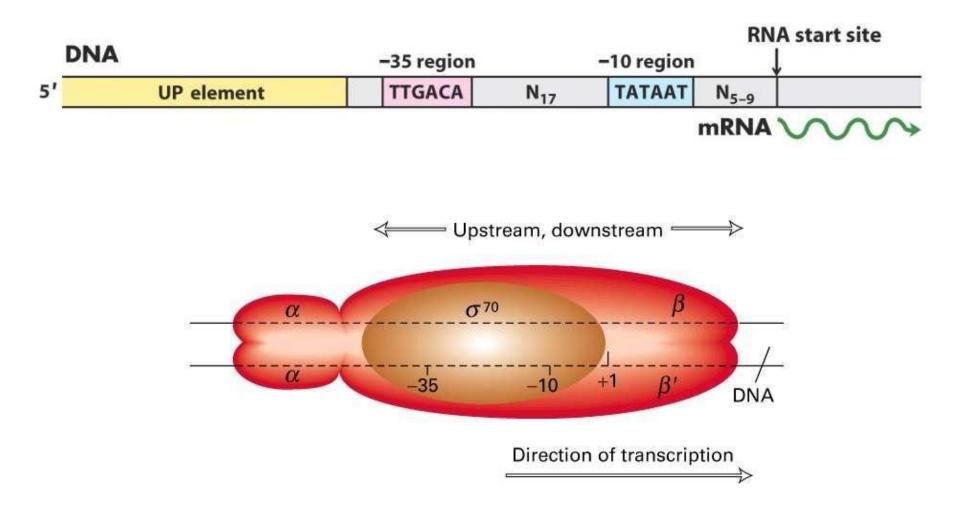
Principal factors in bacterial expression

Type of expression vectors

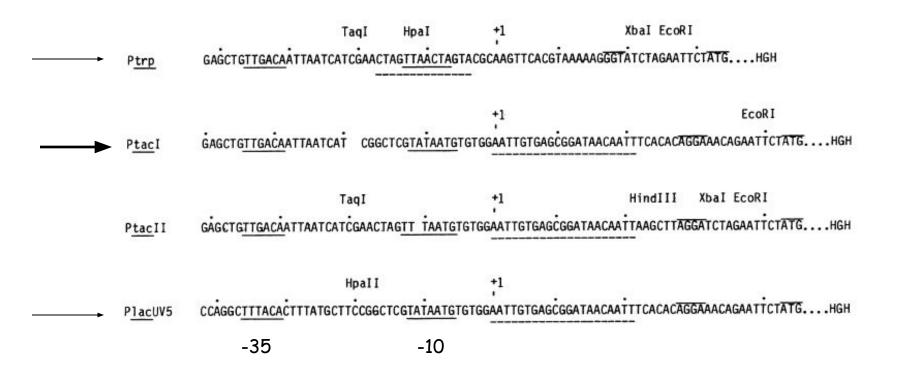

	Promoter	Insert with translational signals	
			South States
		RBS and start codon ↓	mRN
		Protein product	
Franslati	onal fusions Promoter and	Insert	
	translational signals	msert	
	RBS and s codon		mF


Initiation of Transcription Promoters for Expression in Prokaryotes

- In Escherichia coli
 - Lac system plac
 - Trp system
 - synthetic systems ptac, ptrc


• In Bacillus

The Lac promoter System



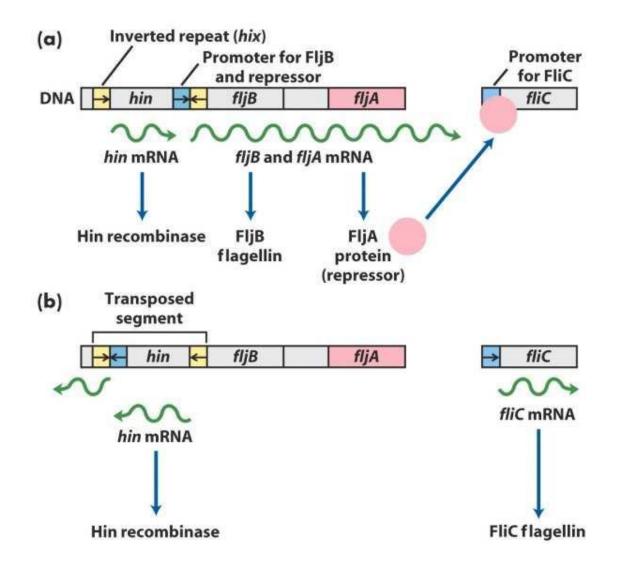
E. coli Promoter Sites

Synthetic E. coli promoters

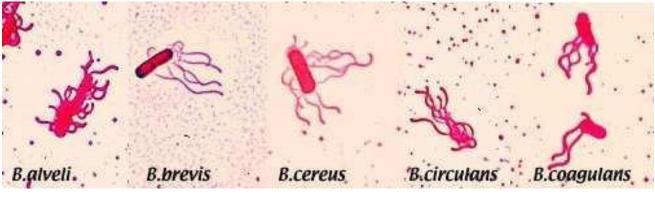
ptac -> -35 box from ptrp + -10 box from plac -> pt+ac

Promoter	Repression requirements	Induction	Benefits	Drawbacks
lac/lacUV5ª	lac I ⁴	IPTG (lactose)	Strong promoter, easily induced	Leakage
trp	trp R	trp starvation or β-IAA addition	Strong promoter	Difficult to repress, induction tox- icity
tac ^b	lac I ⁴	IPTG (lactose)	Very strong promoter, easily induced	Leakage
P_L, P_R^c	phage repressor (cl857)	Heat shock or nalidixic acid	Very strong promoter	Leakage, induction of SOS and heat shock responses, slow growth
<i>tac</i> or <i>lac</i> and phage <i>att</i> sites ^d	lysogen λxis-cI857	Short heat shock in- verts promoter	Strong promoters, no leakage	Efficiency, timing of inversion may vary
T7 ^e	T7 lysozyme (pLys) or	IPTG induces T7 pol expression	Strong promoter, easily induced	Lysozyme toxicity in cells, some leakage may occur,
	F' for infection	T7 phage infection	No leaka ge	Limited to engineered strains
phoAf	phoR	Phosphate starvation	Inexpensive, growth regulated induction	May activate SOS response

TABLE I Commonly Used Promoter Systems


^a pSL301, Invitrogen.
^b pKK223-3, Pharmacia; pPROK-1, Clontech.
^c pPL-lambda, Pharmacia.

^d pNH series, Stratagene.


e pET series, Novagen.

f pBAce, Stratagene.

Inverted Promoter System (from Salmonella) -> for very toxic proteins

Bacillus

Flagellar stains of various species of Bacillus from CDC

In 1872, Ferdinand Cohn, a student of Robert Koch, recognized and named the bacterium **Bacillus** *subtilis*.

The organism was made to represent a large and diverse genus of Bacteria, **Bacillus**, and was placed in the family **Bacillaceae**.

The family's distinguishing feature is the production of **endospores**, which are highly refractile resting structures formed within the bacterial cells. Since this time, members of the genus *Bacillus* are characterized as Gram-positive, rod-shaped, aerobic or facultative, endospore-forming bacteria.

Bacillus

- Antibiotic Producers: B. brevis (e.g. gramicidin, tyrothricin), B. cereus (e.g. cerexin, zwittermicin), B. circulans (e.g. circulin), B. laterosporus (e.g. laterosporin), B. licheniformis (e.g. bacitracin), B. polymyxa (e.g. polymyxin, colistin), B. pumilus (e.g. pumulin) B. subtilis (e.g. polymyxin, difficidin, subtilin, mycobacillin).
- **Pathogens of Insects**: *B. larvae, B. lentimorbis,* and *B. popilliae* are invasive pathogens. *B. thuringiensis* forms a parasporal crystal that is toxic to beetles.
- Pathogens of Animals: B. anthracis, and B. cereus. B. alvei, B. megaterium, B. coagulans, B. laterosporus, B. subtilis, B. sphaericus, B. circulans, B. brevis, B. licheniformis, B. macerans, B. pumilus, and B. thuringiensis have been isolated from human infections.
- The Genus Bacillus includes two bacteria of significant medical importance, B. anthracis, the causative agent of anthrax, and B. cereus, which causes food poisoning. Nonanthrax Bacillus species can also cause a wide variety of other infections, and they are being recognized with increasing frequency as pathogens in humans.

Bacillus

• Bacillus strains used as production organisms:

- B. subtilis
 - B. brevis
 - B. licheniformis

Transformation systems:

- via competent cells (during transition from vegetative cells -> sporulation, cell can take up DNA (ss) when population reaches a metabolic state called competence)

- protoplast

.

.

- bacteriophage-mediated transduction

Vectors:

- replicating plasmids (pUB110, pE194, pC194, pHP13, shuttle vectors)
 - -> replicating plasmids with temperature-sensitive origin of replication
 - (replication stops above certain temp. -> pE194 stops above 45°C)
- integrative vectors (normally shuttle vectors)

Promoters:

- aprE promoter -> induction with onset of sporulation

- **amylase promoter** -> growth-phase and nutrition regulated promoter (induction at end of exponential growth + repression by glucose)

- sacB promoter (levansurase) -> not regulated
- spac promoter -> hybrid promoter (subtilis phage + lac operator) -> induction with IPTG

Bacillus as expression host

Table 1

Examples of Expression of Heterologous and Homologous Proteins in Bacilli

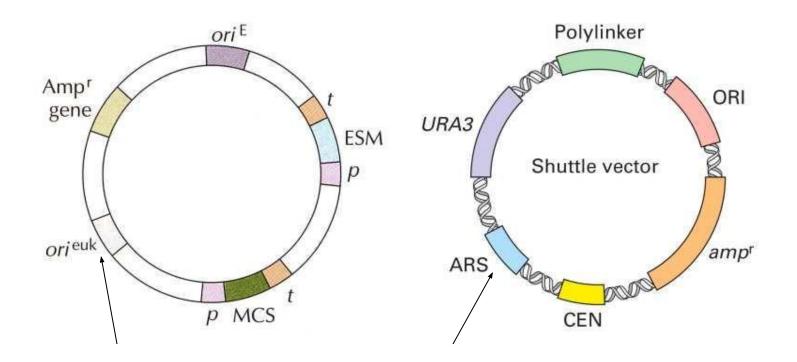
	Origin	Yield	Bacillus sp.	References
Eukaryotic genes				
Epidermal growth factor	Human	3 g/liter	B. brevis	Udaka and Yamagata (1993a)
Growth hormone	Human	0.2 g/liter	B. brevis	Udaka and Yamagata (1993a
Growth hormone	Human	0.2 g/liter	B. subtilis	Honjo et al. (1987)
Growth hormone	Tuna	0.24 g/liter	B. brevis	Udaka and Yamagata (1993a
IL-3	Human	0.10 g/liter	B. licheniformis	van Leen et al. (1991)
Pepsinogen	Swine	0.01 g/liter	B. brevis	Takao et al. (1989)
Salivary <i>a</i> -amylase	Human	0.06 g/liter	B. brevis	Udaka and Yamagata (1993a
Isomerase (disulfide)	Humicola insolens	0.3 g/liter	B. brevis	Udaka and Yamagata (1993a
Taka-amylase	Aspergillus orizae	0.02 g/liter	B. brevis	Udaka and Yamagata (1993a
Bacterial genes				
α-amylase	B. licheniformis	3.5 g/liter	B. brevis	Udaka and Yamagata (1993)
α-amylase	B. licheniformis	1.0 g/liter	B. subtilis	Sloma et al. (1988)
β-lactamase	B. licheniformis	140m g/liter	B. subtilis	Yoshimura et al. (1986)
Cholera toxin B subunit	Vibrio cholerae	1.4 g/liter	B. brevis	Udaka and Yamagata (1993a
Pertussis toxin S1	B. pertussis	100m g/liter	B. subtilis	Saris et al. (1990)
Pertussis toxin S4	B. pertussis	0.5m g/liter	B. subtilis	Saris et al. (1990)
Protein A	S. aureus	1 g/liter	B. subtilis	Fahnestock and Fisher (1986
Subtilisin	B. amyloliquefaciens	60 mg/liter	B. subtilis	Ferrari et al. (1993)

Bacillus as expression host

Table 2

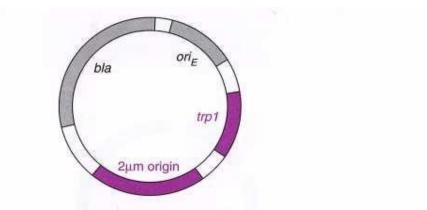
Advantages and Disadvantages of Bacillus Expression

Advantages	Disadvantages
Efficient transformation via natural competence	Industrial strains not easy to transform
B. subtilis is genetically well	
characterized.	
Laboratory strains easy to manipulate	
B. subtilis genome fully sequenced	
Availability of numerous plasmids	Poor efficiency of transformation of ligation mixtures.
Capable of secreting proteins into the medium Availability of several signal sequences	Poor secretion of most heterologous proteins; degradation problems
Well-established fermentation protocol	Genetics and physiology of the fermentation not well understood
Can grow efficiently on inexpensive feedstock	
GRAS status of its products	

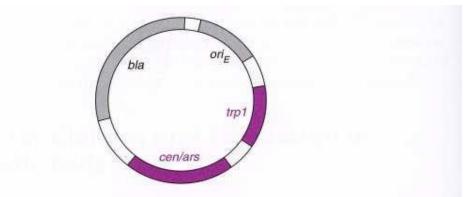

Products produced in Prokaryotic Systems

- Restriction Endonucleases -> produced in E. coli
- L- Ascorbic Acid (Vitamin C) -> recombinant Erwinia herbicola (gram-negative bacterium)
- Synthesis of Indigo (blue pigment -> dye cotton / jeans) -> produced in E. coli
- Amino Acids -> produced in Corynebacterium glutamicum (gram-positive bacterium)
- Lipases (laundry industry) -> from Pseudomonas alcaligenes produced in Pseudomonas alcaligenes
- Antibiotica (most of them from Streptomyces, other gram-positive bacteria, fungi) -> produced in recombinant Streptomyces and fungi (Penicillium)
- Biopolymers (PHB -> biodegradable plastics) -> produced in E. coli (stabilized with parB)

Expression in Eukaryotic Systems


- Yeast
 - Saccharomyces cerevisiae (baker's yeast)
 Pichia pastoris
- Insect Cells Baculovirus
- Mammalian Cells

Expression in Yeast



Autonomous replicating vectors -> shuttle vectors

Expression in Saccharomyces cerevisiae Autonomous replicating systems

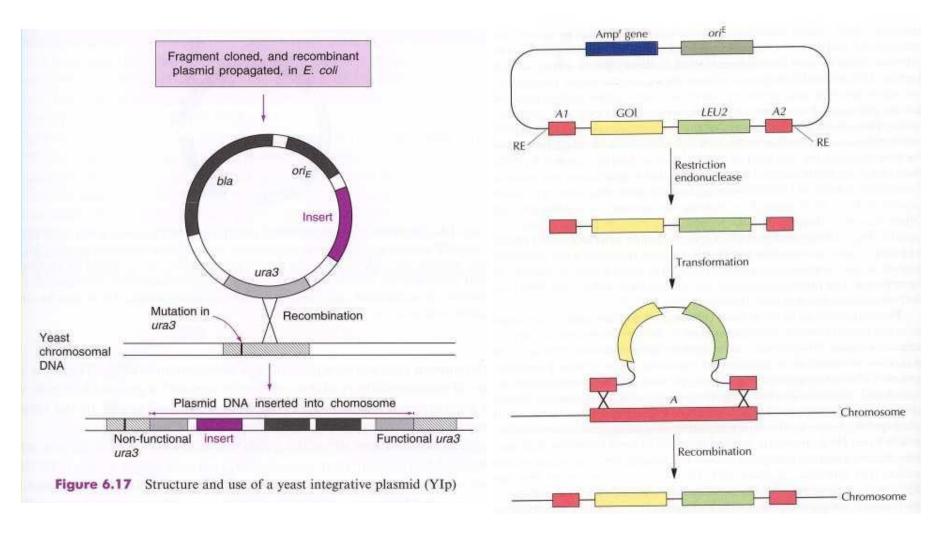


Figure 6.15 Structure of a yeast episomal vector: bla = beta-lactamase (ampicillin resistance); ori = origin of replication in *E. coli*; trp1 = selectable marker in *S. cerevisiae* auxotrophs; $2 \mu m$ origin = origin of replication in *S. cerevisiae*

Figure 6.16 Structure of a yeast centromere vector: bla = beta-lactamase (ampicillin resistance); ori = origin of replication in*E. coli; trp1*= selectable marker in*S. cerevisiae*auxotrophs;*cen/ars*= centromere and autonomously replicating sequence, providing an origin of replication in*S. cerevisiae*

Expression in Saccharomyces cerevisiae Integrative systems

Probability for integration higher with linear fragments

Expression in Saccharomyces cerevisiae

Plasmid type	Copy number	Selectable marker ^a	Comments
Integrative (YIp)	One	URA3, LEU2	Stable integration into chromosome
Multi-integrative	One-five	URA3, LEU2	Stable integration into chromosome
Centromere (YCp)	One-two	TRP1, URA3, LEU2, HIS3	Stable autonomously replicating from ARS element or 2-µm origin
ARS (YRp)	Moderate	TRP1	Autonomously replicating but un- stable
2 μm (YEp)	Moderate	LEU2, URA3, HIS3	Autonomously replicating but fairly stable
2 μm (YEp)	High	LEU2-d, POT	Autonomously replicating, stable

TABLE II Examples of Vectors for Yeast Expression

^a Examples of the common selectable markers available for each vector type; other combinations of selectable markers and vector type have been developed in individual laboratories.

Expression in Saccharomyces cerevisiae

Promoter	Expression conditions	Status
Acid phosphatase (PH05)	Phosphate-deficient medium	Inducible
Alcohol dehydrogenase I (ADHI)	2–5% Glucose	Constitutive
Alcohol dehydrogenase II (ADHII)	0.1-0.2% Glucose	Inducible
Cytochrome c_1 (CYC1)	Glucose	Repressible
Gal-1-P Glc-1-P uridyltransferase	Galactose	Inducible
Galactokinase (GAL1)	Galactose	Inducible
Glyceraldehyde-3-phosphate dehydrogenase (GAPD, GAPDH)	2–5% Glucose	Constitutive
Metallothionein (CUP1)	0.03-0.1 mM copper	Inducible
Phosphoglycerate kinase (PGK)	2–5% Glucose	Constitutive
Triose phosphate isomerase (TPI)	2–5% Glucose	Constitutive
UDP galactose epimerase (GAL10)	Galactose	Inducible

Table 7.1 Promoters for S. cerevisiae expression vectors

TABLE I Partial List of Human Proteins Produced

in Saccharomyces cerevisiae at High Levels*,b

	Protein (molecular weight)	Reference/source
	Cytoplasmic expression	
	Cu, Zn superoxide dismutase (15.7 kDa)	Hallewell et al., 1987, 1991
	γ-Interferon (16.8 kDa)	Derynck et al., 1983; Fieschko et al., 1987
	Fibroblast growth factor (18 kDa) Hepatitis B surface antigen (22 kDa)	 Barr et al., 1988; G. McKnight, pers. comm. Hitzeman et al., 1983a; Miyanohara et al., 1983; McAleer et al., 1984; Bitter and Egan, 1984; Bitter et al., 1988; Jacobs et al., 1989
	Hepatitis B core antigen (22 kDa)	Kniskern et al., 1986
	Lipocortin V (35 kDa)	M. Irani, pers. comm.
	Go,1 subunit (41 kDa)	T. Jones and V. L. MacKay, unpublished
	a-1-Antitrypsin (44.7 kDa)	Cabezón et al., 1984; Casolaro et al., 1987
	Platelet-derived endothelial cell growth factor (45 kDa)	Finnis et al., 1992
tors !	Hemoglobin (62 kDa)	Wagenbach et al., 1991; Coghlan et al., 1992; Ogden et al., 1991, 1992
	cAMP phosphodiesterase isozyme IV (77 kDa)	McHale et al., 1991
	Coagulation factor XIIIa (83 kDa)	Bishop et al., 1990
	HIV-1 reverse transcriptase (117 kDa)	Bathurst et al., 1990
	Secretory expression	
	Epidermal growth factor (5.5 kDa)	Brake et al., 1984; George-Nascimento et al., 1988
	Insulin precursors (6 kDa)	Thim et al., 1986
to be	Insulin-like growth factor I (7.5 kDa) Parathyroid hormone (9.4 kDa)	Bayne et al., 1988; Steube et al., 1991 Gabrielsen et al., 1990
	Granulocyte-macrophage colony- stimulating factor (14 kDa)	Miyajima et al., 1986; Ernst, 1988
	Lysozyme (14.7 kDa)	Jigami et al., 1986; Taniyama et al., 1988; Ichi- kawa et al., 1989
	Interleukin-1a, B (17 kDa)	Baldari et al., 1987; Ernst, 1988; Livi et al., 199
	α-Interferon (20 kDa)	Hitzeman et al., 1983b; Singh et al., 1984; Bit- ter et al., 1984; Mellor et al., 1985; Chang e al., 1986; Zsebo et al., 1986
	Growth hormone (22 kDa)	Hitzeman et al., 1984; Tokunaga et al., 1985; Hiramatsu et al., 1990
	Interleukin-6 (22 kDa)	Guisez et al., 1991
	Erythropoietin (24 kDa)	Elliott et al., 1989
	Platelet-derived growth factor (30 kDa)	Kelly et al., 1985; Östman et al., 1989
	Thrombin zymogens (36-69 kDa)	H. Han and V. L. MacKay, unpublished
	Single-chain urokinase (47 kDa)	Melnick et al., 1990
	β1-4 Galactosyltransferase (48 kDa)	Krezdorn et al., 1993
	Chimeric L6 antibody Fab (48 kDa)	Horwitz et al., 1988; Better and Horwitz, 1989

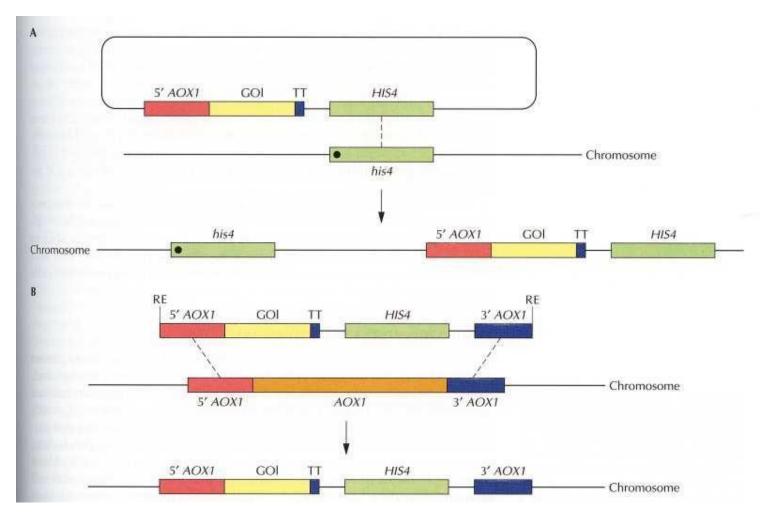
Yeast are efficient secretors

Secretory expression preferred if:

-> if product toxic

-> if many S-S bonds need to be closed

Expression in S. cerevisiae – Pichia pastoris


Problems with production in S. cerevisiae:

- For some proteins production level low
- Hyperglycosylation (more than 100 mannose residues in N-glycosylation)
- Sometimes secretion not good -> protein stack in cells (periplasma)
- S. cerevisiae produces high amount of EtOH -> toxic for the cells -> effects level of production

Advantages of production in Pichia pastoris:

- Highly efficient promoter, tightly regulated (alcohol oxidase -> AOX, induced by MeOH)
- Produces no EtOH -> very high cell density -> secretion very efficient
- Secretes very few proteins -> simplification of purification of secreted proteins

Expression in Pichia pastoris Integrative systems

Expression in Pichia pastoris

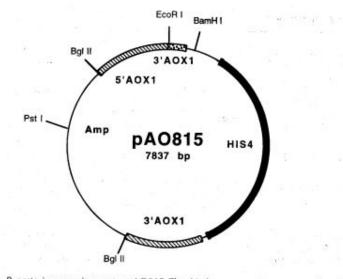


Figure 2 P. pastoris expression vector pAO815. The thin line represents sequences from E. coli plasmid pBR322 (with permission from Cregg and Higgins, 1995).

Table 2Common P. pastoris Expression Vectors

Vector name	Selectable markers	Feature	Reference
Intracellular pHIL-D2	HIS4	NotI sites for <i>AOX1</i> gene replacement	K. Sreekrish na (personal communication)
pAO815	HIS4	Expression cassette bounded by <i>Bam</i> HI and <i>Bgl</i> II sites for generation of multicopy expression vector	Thill et al. (1990)
рРІС3К	HIS4 and kan ^r	Multiple cloning sites for insertion of foreign genes; G418 selection for multicopy strains	Scorer <i>et al</i> . (1993b)
pPICZ	ble ^r	Multiple cloning sites for insertion of foreign genes;	Higgins et al. (1998) (continues)

Expression in Pichia pastoris

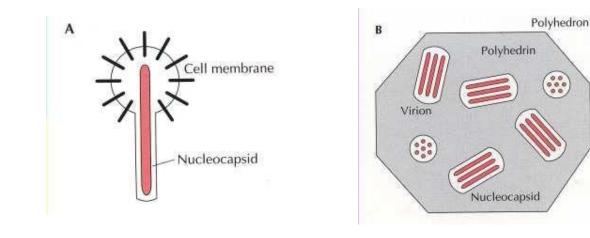
Table 4

Advantages and Disadvantages of the P. pastoris Expression System

Advantages	Disadvantages
Culturing	
Rapid growth rate	
High-cell density: >100 g (dcw)/liter	
Clean medium composed of salts,	
biotin, and carbon source	
Easily scaled up to large-volume,	Fermentor culturing often needed
high-density fermentor cultures	to achieve high level of
	foreign protein
Molecular genetics	ioroign protoin
Classical genetic methods available	
Molecular methods similar to S. cerevisiae	Range of vectors limited
Stable integrated expression vectors	
Promoters	
AOX1p—strong, tightly regulated, and	
easily controlled	
GAPp—strong constitutive	
Expression	
Eukaryotic environment aids folding of	
higher eukaryotic foreign proteins	i si
High expression levels	
Secretion	Improper posttranslational
Proper posttranslational modifications	modifications
Sulfhydril bond formation	Native signals not always
Signal sequence processing	processed
Folding	Some proteins misfold and
Glycosylation	become stuck in secretory
High levels—g/liter fermentor cultures	pathway
Few yeast proteins in medium—high	Lower eukaryotic (high
initial purity of foreign protein	mannose)-type glycosylation
	Proteases in medium degrade
	some foreign proteins

Expression in Insect cells

Baculovirus:

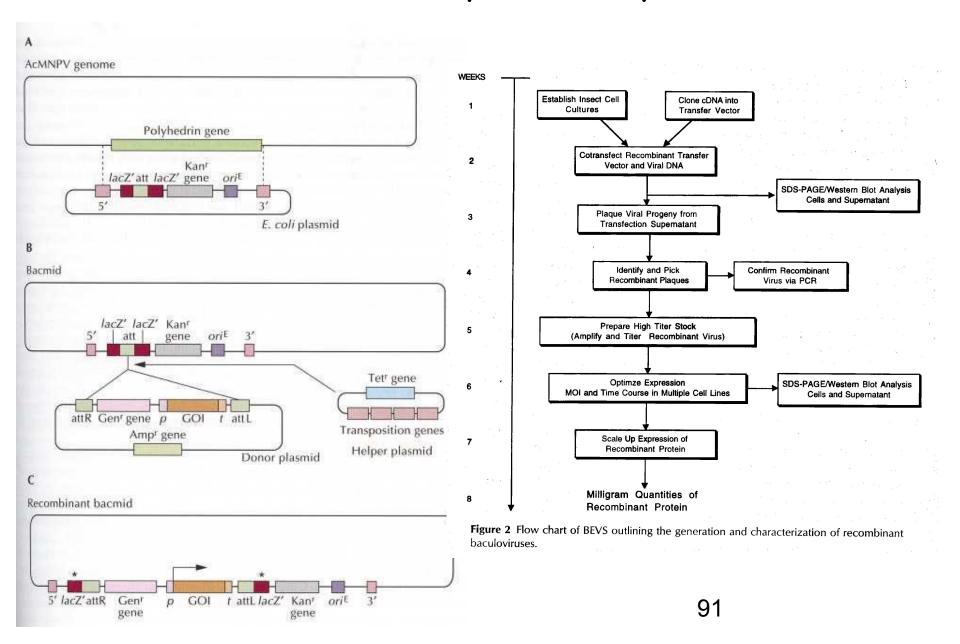

-> infects invertebrates (insects)

- -> in infection cycle 2 forms of baculovirus are formed:
 - -> single virus particle
 - -> in protein matrix (polyhedron) trapped clusters of viruses

89

-> during late stage of infection massive amount of polyhedron produced -> strong promoter -> polyhedron not required for virus production

-> polyhedron promoter optimal for heterologous protein production in insect cells


Expression in Insect cells

- Baculovirus:
- -> Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) many used as expression vector
- -> Production of recombinant baculovirus:

1. create a transfer vector (*E. coli* based plasmid with AcMNPV DNA - polyhedrin promoter/terminator + flanking sequences) -> gene of interest cloned downstream of promoter

- 2. Insect cells are cotransfected with virus (AcMNPV) + transfer vector
 - -> in some double infected cells -> double crossover event (recombination)
 - -> produce recombinant virus (bacmid -> E. coli insect cell baculovirus shuttle vector)
 - -> cells infected with recombinant virus -> produce plaques (lack of polyhedrin)
- 3. DNA hydridisation + PCR used to identify recombinant virus
- 4. Infection of insect cells with concentrated stock of verified recombinant virus -> 4-5 days later protein harvested

Baculovirus expression system

Baculovirus expression system

Table 4

Heterologous Protein Expression

Protein	Origin	Reference
β-Hexoaminidase B	Human	Pennybacker et al. (1997)
Myosin light chain kinase	Human	Lin et al. (1997)
DNA helicase II	Human	Zhang and Grosse (1997)
Bullous pemphigoid antigen 2	Human	Masunaga et al. (1997)
Lymphotoxin-a1ß2 complex	Human	Williams-Abbott et al. (1997)
Werner's syndrome (WRN) helicase	Human	Suzuki et al. (1997)
Angiostatin	Murine	Wu et al. (1997)
Serotonin 5-HT7 receptor	Murine	Obosi et al. (1997)
Replication factor C (hRFC)	Human	Cai et al. (1997)
Endothelial nitric oxide (eNOS)	Bovine	Ju et al. (1997)
Growth hormone receptor	Human	Bieth et al. (1997)
MAL	-	Puertollano et al. (1997)
Leptin receptor		Devos et al. (1997)
Insulin receptor substrate-1	Human	Algenstaedt et al. (1997)
Manganese-dependent superoxide dismutase	Human	Wright et al. (1997)
Parvovirus VP2 capsid protein	Porcine	Sedlik et al. (1997)
Varicella-zoster virus (VZV) glycoproteins E and I (heterodimer)	-	Kimura et al. (1997)
Hawaii calicivirus capsid protein	<u> </u>	Green et al. (1997)
Cardiac Ca2+ pump and phospholamban	Canine	Autry and Jones (1997)
Type IV collagenase/gelatinase	Human	George et al. (1997)
Eukaryotic initiation factor-2B (eIF-2B)	Human	Fabian et al. (1997)
Cellobiohydrolase	Fungal	von Ossowski et al. (1997)
Respiratory syncytial virus fusion protein		Parrington et al. (1997)

Why this system?

- 1. Insect cells have almost the same posttranslational modifications as mammalian cells
- 2. Higher expression level than mammalian cells

Mammalian cell expression system

- 1. Why do we use that system?
 - -> to get full complement of posttranslational modifications on proteins
- 2. Developed cell lines:
 - -> short term (transient) expression -> autonomous replicating systems -> viral origins (SV40)
 - African green monkey kidney (COS)
 - baby hamster kidney (BHK)
 - human embryonic kidney (HEK-239)
 - -> long term (stable) expression -> integration into chromosome -> viral origins
 - chinese hamster ovary (CHO)

Mammalian cell expression system

Table 3

Comparison of Sindbis Virus and Other Viral Expression Systems

	Sindbis virus	Retrovirus	Adenovirus	Baculovirus
Expression	Transient	Stable	Transient	Transient
Expression level	High	Depends on integration site	High	High
Construction	Plasmid construction	Requires use of cell line	Requires recombination	Requires recombination and plaque purification
Tropism	Wide	Depends on packaging cell line	Variable	Insect cells
Infection efficiency Host protein shutoff	High Yes	Variable No	Variable Yes	High Yes

Gene expression in mammalian cell lines

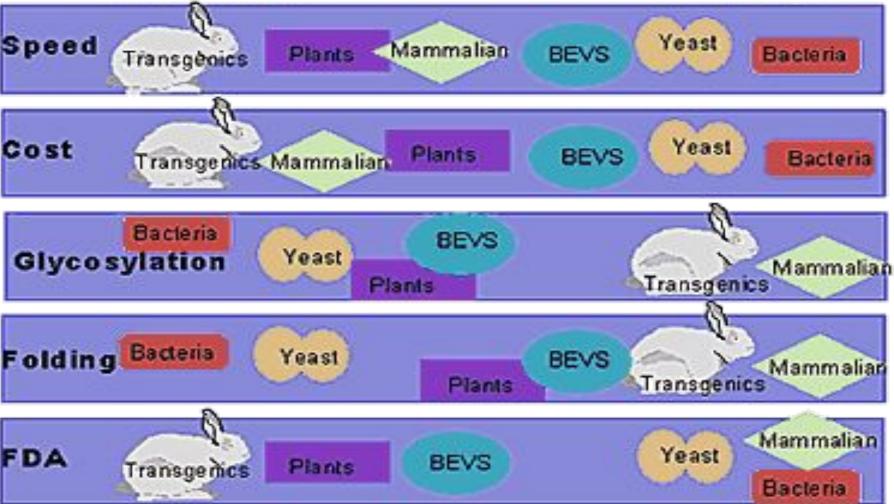
A convenient alternative for setting up mammalian cell facilities – get a comprehensive service from us. We will achieve stable expression of the gene of your interest in mammalian cells.

Customer provides:

- Mammalian vector with the gene (cDNA) to be expressed. We accept plasmid and retroviral vectors
- Sequence of the gene and map of the construct for transfection
- Cell line or information about the cell line to be transfected.

Our service includes:

- Transfection of the cells. In case of a retroviral vector, virus production and cell infection
- Antibiotic selection and generation of stable transfected (infected) cell clones. At least 10 independent clones will be selected and grown
- Quantitative assay of the gene (cDNA) expression level in each transfected clone by RNA isolation followed by Northern hybridisation and/or RT-PCR
- Selection of the best expressing clone
- Cell freezing and depositing
- Duration: 3-6 months (depending on the cell growth rate), allow 1month in addition if the cell line is not available in our collections


Customer receives:

- Detailed report on experiments and data obtained.
- Two vials of transfected cells (the best expressing clone)
- We will deposit the transfected cells in our collection as a precaution against accidental loss of the clone.

Price guide:

Price per transfection and selection of at least 10 clones: £3500.

Competitiveness of different expression systems WORST BEST

http://www.proteinsciences.com/technology/pix/best_worse.gif