Complexity and Fragility?

$$
\begin{gathered}
\text { Or, what color is your } \\
\text { herring? } \\
\text { John Doyle } \\
\text { Control and Dynamical Systems } \\
\text { BioEngineering } \\
\text { Electrical Engineering } \\
\text { Caltech }
\end{gathered}
$$

with Prajna, Papachristodoulou, and Parrilo

IS THERE ANY HOPE?

What is the ultimate showstopper?

${ }^{-1}$ ' Powerpnt

This program has performed an illegal operation and will be shut down.

If the problem persists, contact the program vendor.

IS THERE ANY HOPE?

What is the ultimate showstøpper?

- \uparrow Powerpnt

This program has performed an illegal operation and will be shut down.

Close

If the problem persists, contact the program ve

We can make everything
 Details>>

 as robust and reliable as our software!ANY HOPE?

Engineering design objectives

1. Robust to uncertainty in environment and components
2. Efficient use of scarce resources
3. Scalable to large system sizes
(to do this, it may be necessary to have high internal complexity (complicated),
but we want simple, robust, verifiable external behavior, so...)

Engineering design objectives

1. Robust
 2. Efficient
 3. Scalable

4. Verifiable with short proofs

Bottom line

- Want robustness \& efficiency that is verifiably so
- May require highly complex organization and structure

Robustness, evolvability, and verifiability are compatible and
Tradeoff to some extent against efficiency, cost, complexity, etc.

Threshold theorems

\boldsymbol{E} (latency)

With feedback

\boldsymbol{E} (latency)

With feedback

Zero error with bounded \boldsymbol{E} (latency)!

Danger: new fragilities!

Two opposite views of complexity

Physics:

- Pattern formation by reaction/diffusion
- Edge-of-chaos
- Order for free
- Self-organized criticality
- Phase transitions
- Scale-free networks
- Equilibrium, linear
- Nonlinearity \& complexity as exotica

Engineering:

- Constraints
- Tradeoffs
- Structure
- Organization
- Optimality
- Robustness/fragility
- Verification
- Far from equilibrium
- Nonlinearity \& complexity as tool

Two opposite views of life

Physics:

- If you are dead, you are likely to stay that way

Engineering:

- If you are alive, it is very easy to kill you

The bad news (unfortunately):
Robustness is less fungible with other features than you think.

The good news (hopefully):
If we can identify our fragilities, we can

- verify that we are otherwise robust
- and keep ourselves that way

The "simplest" hard problem

$$
\text { Given } a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0
$$

NPP
(Number partitioning problem)

A "classic" NP complete problem

Branch and Bound

$n=8$

$\sum a_{i}=1$
0.2116
0.1677
0.1358
0.1312
0.1307
0.1079
0.0892
0.0259

$n=10$

$\mathrm{n}=12$

0.20900902553447
0.16372175132032
0.11474666241757
0.11060830317527
0.10264423321886 0.09262647734766 0.06575709562532 0.04944987218796 0.04533843900729 0.02356457821016 0.02025723346225 0.00227632849288

Still exponentially bad.

$\mathrm{n}=16$
0.11874666798309
0.11211512926647
0.11169327453340
0.11095064177068 0.09412186438521 0.08685317462754 0.08118017281551 0.06766995122518 0.05718523360114 0.03754549903682 0.03586488042322 0.03254947795691 0.01521112174069 0.01506074475625
0.01423812298937 0.00901404288853

$\mathrm{n}=10$

0.16212567898594
0.14166406741328
0.13672813657519
0.13542304261100
0.11591869442981
0.11370146803691 0.06062893005904 0.05985800729769 0.04919688814988 0.02475508644126
$\left|\sum a_{i} x_{i}\right|$ for $x_{i}= \pm 1$ looks roughly like IID uniform random variable

$\mathrm{n}=10$
$\left|\sum a_{i} x_{i}\right|^{2}=\sum\left(a_{i} a_{j}\right) x_{i} x_{j}$ antiferromagnetic Mattis spin glass $(\min)^{2}=$ ground state energy

Energy landscape

$$
E(\min \text { of } m \text { IID uniform }[0,1] \text { random variables }) \propto \frac{1}{m}
$$

$$
E\left(\min \text { of } 2^{m} \text { IID uniform }[0,1] \text { random variables }\right) \propto 2^{-m}
$$

$$
E\left(\min _{x_{i}^{2}=1} \frac{\left|\sum a_{i} x_{i}\right|}{\sum a_{i}}\right) \propto \frac{2^{-n}}{\sqrt{n}}
$$

Large statistical physics literature Mertens, Derrida, Gross \& Mezard, ...

$\min _{x_{i}^{2}=1} \frac{\left|\sum a_{i} x_{i}\right|}{\sum a_{i}}>\varepsilon ? \quad$ where $\quad \varepsilon \ll \frac{2^{-n}}{\sqrt{n}}$
This is true "almost surely," but there is currently no method that will systematically generate short proofs.

Why should anyone care?

- Computational problems in biology and advanced technologies are even harder.
- If we can't do this "simple" problem, what hope is there for scalability of computational methods to large networks?
- Is there some other reason for optimism?

Toy problem: $\quad R=\min _{x_{i}^{2}=1} \frac{\left|\sum a_{i} x_{i}\right|}{\sum a_{i}}$

In general: $\quad R=\min _{x \in X} M(x)$
$M=$ model of system $X=$ uncertainty set $R=$ robustness

Central computational problems in biology and advanced technologies can be written this way and are formally "hard" (NP/coNP hard or undecidable)

$R=\min _{x_{i}^{2}=1}\left|\sum a_{i} x_{i}\right| \quad$ explicitly modeled uncertainty
$R_{2}=\left\{\min \sum\left|a_{i}-b_{i}\right| \quad\left|\min _{x_{i}^{2}=1}\right| \sum b_{i} x_{i} \mid=0\right\}$
check for
fragilities to model
parameters

Theorem: $R=R_{2}=R_{3}$

In general

Robustness

What if robust systems are intrinsically hard to verify and understand?

Robustness

fragile
simple
hard

Complexity

What if robust systems are intrinsically hard to verify and understand?

Biology: We might accumulate more complete parts lists but never "understand" how it all works. Technology: We might build increasingly complex and incomprehensible systems which will eventually fail completely yet cryptically.

- Nothing in the orthodox views of complexity says this won't happen (apparently).
- Fortunately, there is some good news.
- Illustrate the "good news" in our simple problem.

Theorem: $C \leq \frac{1}{R}$

There exist example instances in all the regions permitted by the theorem.
$C \leq \frac{1}{R}=$ "Fragility"

Theorem: $C \leq \frac{1}{R}$

Robust problems are rare and

highly structured

Random problems are highly complex and extremely fragile

Computing is HARD at phase boundaries.

Robust problems

 are rare and highly structuredThe most "interesting" problems are on the boundary.

Random problems are highly complex and extremely fragile.

Theorem: $C \leq \frac{1}{R}$
Biology and technology

Robustness

fragile

Complexity

Theorem: $C \leq \frac{1}{R}$

$$
\begin{aligned}
& \left.\begin{array}{l}
C=\text { search depth } \\
\#=\text { operation count }
\end{array}\right\} \Rightarrow \# \leq n 2^{C} \\
& C \leq \frac{1}{R} \Rightarrow \# \leq O\left(n 2^{\frac{1}{R}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Linear } \\
\text { Program }
\end{gathered} \Rightarrow \# \leq O\left(n^{2} \log \left(\frac{1}{R}\right)\right)
$$

Random problems
$\min _{x_{i}^{2}=1}\left|\sum a_{i} x_{i}\right| \approx \frac{2^{-n}}{\sqrt{n}}$
This is true "almost surely," but has proof length of $\#=O\left(2^{n}\right)$

Random problems are hopelessly fragile, and it's easy to show that:

Robust problems

- Mirst decoup organizational and computational comptexity
- Must explictivexploit robustness/fragility in compthation
- Substantial recent progress
- Small tip of a huge and growing iceberg, yet...
- New approach in its infancy

coNP

Hard

NP

Computational complexity

P

"easy"

coNP

 Problem
Economics

Algorithms

Controls

NP

Communications

Dynamical Systems

Physics

- Domain-specific assumptions
- Enormously successful
- Handcrafted theories

Economics

- Incompatible assumptions

Algorithms

- Tower of Babel where even experts cannot communicate
- "Unified theories" failed
- New challenges unmet

Communications

Dynamical Systems

Controls

coNP

coNP

Algorithms

Controls

NP

Internet

Dynamical Systems

Physics

Unifie

 coNP
d Theor

Algorithms

Biology
 Controls

Internet

Dynamical Systems

Physics

- new questions and

 answers- The unifying language is (new) mathematics

Challenge

- Tried to describe one important idea using simplest example and minimal math

Algorithms

- Just the beginning, but promising foundation for ASE?

Biology

Internet

Communications

Dynamical Systems

P

Physics

Unifie d

 Theor
Economics

Algorithms

Biology

Controls

Pedagogical strategy:

- Describe theorems on highly abstracted \& simplified toy models that illustrate essence of general principles
- Nearly "math-free" exposition using cartoons and pictures

Physics

