### **Complexity and Fragility?**

*Or, what color is your herring?* John Doyle Control and Dynamical Systems BioEngineering Electrical Engineering Caltech

with Prajna, Papachristodoulou, and Parrilo

# IG JODUAT MEG F EIL GERSHENFELF CORSENSE OF STAN CORSENS THE I

# IS THERE



What is the ultimate showstopper?











What is the ultimate showstopper?

Close

Details>>

#### Reverpent Reverpent



This program has performed an illegal operation and will be shut down.

If the problem persists, contact the program vendor.





What is the ultimate showstopper?

#### Reverpnt

ve



This program has performed an illegal operation and will be shut down.



If the problem persists, contact the program

We can make *everything* as robust and reliable as our software!





### Engineering design objectives

- 1. Robust to uncertainty in environment and components
- 2. Efficient use of scarce resources
- 3. Scalable to large system sizes

(to do this, it may be necessary to have high *internal* complexity (*complicated*),

but we want simple, robust, verifiable external behavior, so...)

## Engineering design objectives

- 1. Robust
- 2. Efficient
- 3. Scalable

#### 4. Verifiable with short proofs

### Bottom line

- Want robustness & efficiency that is *verifiably* so
- May require highly complex organization and structure

## Robustness, evolvability, and verifiability are compatible and

Tradeoff to some extent against efficiency, cost, complexity, etc.







# *Zero* error with bounded *E*(latency)!

#### Danger: new fragilities!

### Two opposite views of complexity

#### Physics:

- Pattern formation by reaction/diffusion
- Edge-of-chaos
- Order for free
- Self-organized criticality
- Phase transitions
- Scale-free networks
- Equilibrium, linear
- Nonlinearity & complexity as exotica

#### Engineering:

- Constraints
- Tradeoffs
- Structure
- Organization
- Optimality
- Robustness/fragility
- Verification
- Far from equilibrium
- Nonlinearity & complexity as tool

## Two opposite views of life

#### Physics:

• If you are dead, you are likely to stay that way

#### Engineering:

• If you are alive, it is very easy to kill you

The bad news (unfortunately): Robustness is less fungible with other features than you think.

The good news (hopefully):

- If we can identify our fragilities, we can
- verify that we are otherwise robust
- and keep ourselves that way

#### The "simplest" hard problem

NPP (Number partitioning problem)

Given 
$$a_1 \ge a_2 \ge \dots \ge a_n \ge 0$$
  
Compute  

$$\min_{\substack{x_i^2 = 1 \\ x_i = \pm 1}} \left| \sum a_i x_i \right|$$

$$= \min_{\substack{x_i = \pm 1 \\ \pm}} \left| \sum a_i x_i \right|$$

$$= \min_{\substack{x_i = \pm 1 \\ \pm}} \left| a_1 \pm a_2 \pm \dots \pm a_n \right|$$

#### A "classic" NP complete problem







| n=8    | $\sum a_i = 1$ |
|--------|----------------|
| 0.2116 |                |
| 0.1677 |                |
| 0.1358 |                |
| 0.1312 |                |
| 0.1307 |                |
| 0.1079 |                |
| 0.0892 |                |
| 0.0259 |                |







n=10



- 0.1552
- 0.1479
- 0.1448
- 0.1216
- 0.1204
- 0.1044
- 0.0932
- 0.0848
- 0.0149
- 0.0129



n=12

0.20900902553447 0.16372175132032 0.11474666241757 0.11060830317527 0.10264423321886 0.09262647734766 0.06575709562532 0.04944987218796 0.04533843900729 0.02356457821016 0.02025723346225 0.00227632849288



#### Still exponentially bad.

#### n=16

0.11874666798309 0.11211512926647 0.11169327453340 0.11095064177068 0.09412186438521 0.08685317462754 0.08118017281551 0.06766995122518 0.05718523360114 0.03754549903682 0.03586488042322 0.03254947795691 0.01521112174069 0.01506074475625 0.01423812298937 0.00901404288853



n=10

0.16212567898594 0.14166406741328 0.13672813657519 0.13542304261100 0.11591869442981 0.11370146803691 0.06062893005904 0.05985800729769 0.04919688814988 0.02475508644126





n=10





## $E(\min \text{ of } m \text{ IID uniform } [0,1] \text{ random variables}) \propto \frac{1}{m}$

 $E(\min \text{ of } 2^m \text{ IID uniform } [0,1] \text{ random variables}) \propto 2^{-m}$ 

$$E\left(\min_{x_i^2=1}\frac{\left|\sum a_i x_i\right|}{\sum a_i}\right) \propto \frac{2^{-n}}{\sqrt{n}}$$

Large statistical physics literature Mertens, Derrida, Gross & Mezard, ...







$$\min_{x_i^2=1} \frac{\left|\sum a_i x_i\right|}{\sum a_i} > \varepsilon? \quad \text{where} \quad \varepsilon << \frac{2^{-n}}{\sqrt{n}}$$
This is true "almost surely," but  
there is currently no method that  
will systematically generate short proofs



## Why should anyone care?

- Computational problems in biology and advanced technologies are even harder.
- If we can't do this "simple" problem, what hope is there for scalability of computational methods to large networks?
- Is there some other reason for optimism?

Toy problem: 
$$R = \min_{x_i^2 = 1} \frac{\left|\sum a_i x_i\right|}{\sum a_i}$$

In general:  $R = \min_{x \in X} M(x)$ 

- M =model of system
- X = uncertainty set
- R =robustness

Central computational problems in biology and advanced technologies can be written this way and are formally "hard" (NP/coNP hard or undecidable)



Various levels of paranoia



 $R = \min_{x_i^2 = 1} \left| \sum a_i x_i \right|$  explicitly modeled uncertainty

$$R_{2} = \left\{ \min \sum |a_{i} - b_{i}| \mid \min_{x_{i}^{2} = 1} |\sum b_{i}x_{i}| = 0 \right\}$$
  

$$R_{3} = \left\{ \min \delta \mid \min_{|x_{i}| - 1| \le \delta} |\sum a_{i}x_{i}| = 0 \right\}$$
  
check for  
fragilities to  
model  
parameters

Theorem: 
$$R = R_2 = R_3$$





What if robust systems are intrinsically hard to verify and understand?

hard



What if robust systems are intrinsically hard to verify and understand?

**Biology**: We might accumulate more complete parts lists but never "understand" how it all works. **Technology**: We might build increasingly complex and incomprehensible systems which will eventually fail completely yet cryptically.

- Nothing in the orthodox views of complexity says this won't happen (apparently).
- Fortunately, there is some good news.

NIGHT

• Illustrate the "good news" in our simple problem.



Theorem: 
$$C \leq \frac{1}{R}$$

There exist example instances in all the regions permitted by the theorem.

$$C \le \frac{1}{R} = "Fragility"$$





#### **Robust problems** are rare and highly structured





Random problems are highly complex and extremely fragile

> Computing is HARD at phase boundaries.







$$C = \text{ search depth} \\ \# = \text{ operation count} \} \implies \# \le n 2^C$$
$$C \le \frac{1}{R} \implies \# \le O\left(n 2^{\frac{1}{R}}\right)$$

Linear  
Program 
$$\Rightarrow \# \le O\left(n^2 \log\left(\frac{1}{R}\right)\right)$$

## Random problems

 $\min_{x_i^2=1} \left| \sum a_i x_i \right| \approx \frac{2^n}{\sqrt{n}}$ This is true "almost surely," but has proof length of  $\# = O(2^n)$ 

## Random problems are hopelessly fragile, and it's easy to show that:









AVOIDI

- Must decouple organizational and computational complexity
- Must explicitly exploit robustness/fragility in computation
- Substantial recent progress
- Small tip of a huge and growing iceberg, yet...
- New approach in its infancy





- Domain-specific assumptions
- Enormously successful
- Handcrafted theories
- Incompatible assumptions
- Tower of Babel where even experts cannot communicate
- "Unified theories" failed

**Physics** 

• New challenges unmet



Economics

Communications

Dynamical Systems

P







- The unifying language is (new) mathematics
- Tried to describe one important idea using simplest example and minimal math
- Just the beginning, but promising foundation for ASE?

**Physics** 



Challenge

![](_page_52_Figure_0.jpeg)

Pedagogical strategy:

Physics

- Describe theorems on highly abstracted & simplified toy models that illustrate essence of general principles
- Nearly "math-free" exposition using cartoons and pictures