
JOHN MCCARTHY -
CREATOR OF LISP

Biography Of John
McCarthy

John McCarthy was born in 1927 in
Boston, Massachusetts. His parents, John
Patrick and IDA Glatt McCarthy, were
immigrants, his father was Lithuanian, and
his mother was Jewish. Young John
showed early success in mathematics – so,
as a schoolboy, he independently mastered
mathematics from University textbooks.
Later, as a student at the California
Institute of technology, McCarthy was able
to jump right through the first two years of
study, but McCarthy's most important
achievement is the invention of the Lisp
programming language in 1958.

Lisp creation process
⦿ In 1956-1959, John McCarthy, along with

students at the Massachusetts Institute of
technology (MIT), developed a new elegant
language for working with lists, which he
gave the name LISP. And many students
have made a significant contribution to this
development. In particular, D. Edwards
programmed the process of clearing
memory of unnecessary arrays, the
so-called garbage collection, which is a
fundamental concept in LISP.

The name of the language is
derived from the abbreviation of the
English words LISP Processing,
which means "list processing". LISP
programs and data exist in the form
of symbolic expressions that are
stored as list structures. LISP deals
with two types of objects: atoms and
lists. Atoms are symbols used to
identify objects that can be numeric
or symbolic (concepts, materials,
people, etc.). A list is a sequence of
zero or more elements enclosed in
parentheses, each of which is either
an atom or a list.

 Advantages Of Lisp
⦿ In Lisp, programmers usually work in a special incremental interactive

programming environment called the eval-print read cycle (REPL). This means
that the system continuously reads expressions entered by the user, evaluates
them, and prints the results.

⦿ Common Lisp was developed from the ground up to create large, complex, and
long-running applications and thus supports hot-swapping software - the code of
an executable program can be changed without having to interrupt it.

⦿ The Lisp programming language invented exception handling and has an error
handling tool called a "condition system" that goes far beyond the limits of most
other languages.

⦿ Common Lisp implementations usually come with a complex "external function
interface" (FFI) that allows direct access to Lisp code written in C or C++, and
sometimes to Java code. This allows programmers to use libraries written in
other languages, which makes these libraries dependent on Lisp. Lisp gives
programmers the ability to implement complex data operations, and mathematical
constructions in an expressive and natural idiom.

Basic Lisp concept
Lisp is the earliest representative of the
functional programming language
paradigm from scratch. Unlike procedural
and object-oriented languages, whose
theoretical model is a Turing machine, the
theoretical model for calculating Lisp is
the Lambda calculus developed by the
Alonso Church. This difference can be
understood in the following ways:

⦿ In a procedural language the code is working with data.
⦿ In object-oriented languages, objects encapsulate code

and data by interacting with each other.
⦿ In functional languages, data is passed through

functions, but does not have a separate existence of its
own.

⦿ In pure functional languages, this is ephemeral.
⦿ However, most functional languages (including Lisp)

provide a mechanism for storing certain data even when
it does not pass through functions. This takes the form
of what Common Lisp calls "special variables", and is
equivalent to "global variables" in other programming
languages. That is, although it is a functional language,
it is not purely functional, although it can be used as
one, avoiding imperative constructs.

The interactivity and flexibility
of Lisp

The interactivity and
flexibility of LispThe

speed of Lisp languages
is usually equivalent to

the interpreted
languages. This is also
the source of the old

myth that if it is
interpreted, it must

therefore be slow, but it is
not. Compilers for Lisp

have been around since
1959, and now all major

common Lisp
implementations can be

compiled directly with
machine code, which is

often the same as C
code.

⦿ For example, the CL-PPCRE expression library
written in Common Lisp is faster than the Perl
regular expression engine on some tests in C, and
learning Lisp is much easier. Programmers who
use interpreted languages such as Python or Perl
should resort to writing in C /C ++ for critical parts
of their code for convenience and flexibility, and
have unique opportunities to do so. This was
shown with direct benchmarking by the Creator of
the R programming language, Ross Ihaka, who
provided tests demonstrating that the optional Lisp
type Declaration and machine code compiler allow
them to be used 380 times faster than R and 150
times faster than Python.

