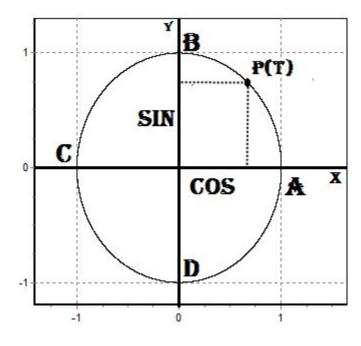
# Занимательная математика алгебра и начала математического анализа, 10 класс.

УРОК НА ТЕМУ: СИНУС И КОСИНУС.



## ЧТО БУДЕМ ИЗУЧАТЬ:

Определение синуса и косинуса.

Определение тангенса и котангенса.

Основное тригонометрическое тождество

Таблица значений синуса, косинуса, тангенса, котангенса.

Основные свойства.

Синус и косинус в жизни.

Примеры задач.

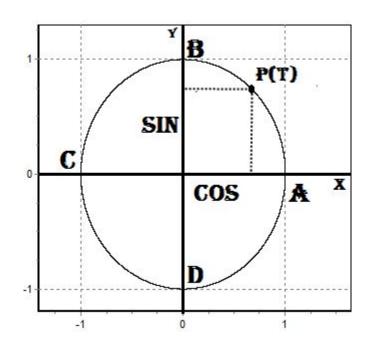
## Определение.

Ребята, давайте отметим на *числовой окружности* точку **P**, посмотрите рисунок, наша точка **P** соответствует некоторому числу **t** числовой окружности, тогда *абсциссу* точки **P** будем называть *косинусом* числа **t** и обозначать **cos(t)**, а *ординату* точки **P** назовем *синусом* числа **t** и обозначим **sin(t)**.

А как будет выглядеть запись синуса и косинуса на математическом языке?

Давайте посмотрим:

Наша точка 
$$P(t) = P(x,y)$$
 тогда:  $X = cos(t)$   $Y = sin(t)$ 



## Тангенс и котангенс.

## Определение.

Так же важно определить понятие тангенса и котангенса числа t числовой окружности, запишем определения:

Отношение **синуса** числа **t** к **косинусу** того же числа называют **тангенсом** числа **t** и обозначают **tg(t)**. Отношение **косинуса** числа **t** к **синусу** того же числа называют **котангенсом** числа **t** и обозначают **ctg(t)**.

$$tg(t) = \frac{\sin t}{\cos t}$$
  $ctg(t) = \frac{\cos t}{\sin t}$ 

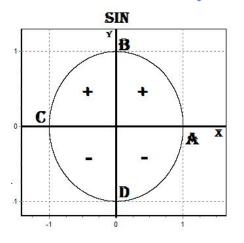
Стоит заметить, так как на 0 делить нельзя, то, для тангенса  $\cos(t) \neq 0$ , а для котангенса  $\sin(t) \neq 0$ 

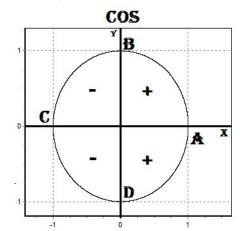
### Основное тригонометрическое тождество.

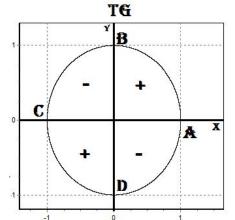
Давайте вспомним уравнение числовой окружности:  $X^2 + Y^2 = 1$  нашему числу X соответствует абсцисса координатной плоскости, а числу Y – ордината, посмотрим определение синуса и косинуса на первом слайде и получим:

$$X^2 + Y^2 = \sin^2 t + \cos^2 t = 1$$
 Важно, запомните!

#### Значения синуса, косинуса, тангенса, котангенса в четвертях окружности:







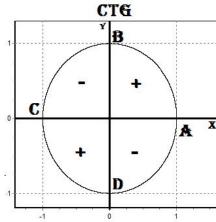


Таблица значений синуса, косинуса, тангенса, котангенса.

| T      | o°      | 30°                  | 450                  | 60°                  | 90°             | 180°    | 270°           | 360°    |
|--------|---------|----------------------|----------------------|----------------------|-----------------|---------|----------------|---------|
|        | 0       | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | π       | <u>3π</u><br>2 | 2π      |
| SIN(T) | 0       | 1 2                  | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               | 0       | - 1            | 0       |
| COS(T) | 1       | √ <u>3</u><br>2      | √ <u>2</u><br>2      | 1 2                  | 0               | -1      | 0              | 1       |
| TG(T)  | 0       | $\frac{\sqrt{3}}{3}$ | 1                    | √3                   | не сущ.         | 0       | не сущ.        | 0       |
| CTG(T) | не сущ. | √3                   | 1                    | √ <u>3</u><br>3      | 0               | не сущ. | 0              | не сущ. |

не сущ. – не существует значение, т.к. на 0 делить нельзя

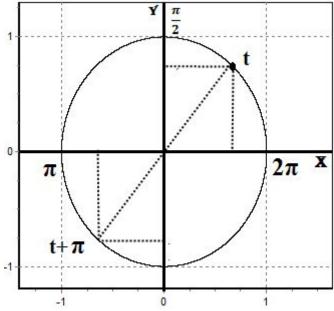
#### Основные свойства.

## Для любого числа t справедливы равенства:

$$sin(-t) = -sin(t)$$
  $tg(-t) = -tg(t)$   
 $cos(-t) = cos(t)$   $ctg(-t) = -ctg(t)$ 

$$\sin(t + 2\pi \cdot k) = \sin(t)$$

$$\cos(t + 2\pi \cdot k) = \cos(t)$$



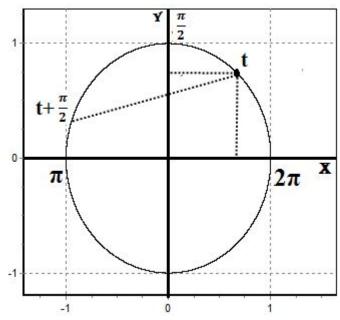
$$sin(t + \pi) = -sin(t)$$

$$cos(t + \pi) = -cos(t)$$

$$sin(t + \pi/2) = cos(t)$$

$$cos(t + \pi/2) = -sin(t)$$

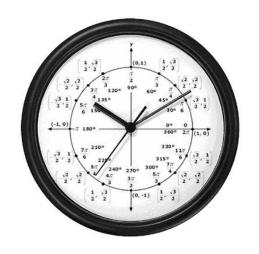
$$\sin(t + \pi) = -\sin(t)$$
  $tg(t + \pi \cdot k) = tg(t)$   
 $\cos(t + \pi) = -\cos(t)$   $ctg(t + \pi \cdot k) = ctg(t)$ 



Синус и косинус в жизни.

## Для чего нужны синусы и косинусы в обычной жизни?

На практике синусы и косинусы применяются во всех инженерных специальностях, особенно в строительных. Их используют моряки и летчики в расчетах курса движения. Не обходятся без синусов и косинусов геодезисты, и даже путешественники. В географии применяют для измерения расстояний между объектами, а также в спутниковых навигационных системах.







## Пример

Вычислить синус и косинус t при:  $t=53\pi/4$ 

#### Решение:

T.к. числам t и  $t+2\pi \cdot k$  (k-целое число) соответствует одна и тоже точка числовой окружности:

$$53\pi/4 = (12 + 5/4) \cdot \pi = 12\pi + 5\pi/4 = 5\pi/4 + 2\pi \cdot 6$$
Воспользуемся свойством  $\sin(t + 2\pi \cdot k) = \sin(t)$ ,  $\cos(t + 2\pi \cdot k) = \cos(t)$   $\sin(5\pi/4 + 2\pi \cdot 6) = \sin(5\pi/4) = \sin(\pi/4 + \pi)$   $\cos(5\pi/4 + 2\pi \cdot 6) = \cos(5\pi/4) = \cos(\pi/4 + \pi)$ 
Воспользуемся свойством  $\sin(t + \pi) = -\sin(t)$ ,  $\cos(t + \pi) = -\cos(t)$   $\sin(\pi/4 + \pi) = -\sin(\pi/4)$   $\cos(\pi/4 + \pi) = -\cos(\pi/4)$ 

Из таблицы значений синуса и косинуса получаем:

$$\sin(53\pi/4) = -\frac{\sqrt{2}}{2}$$

$$\cos(53\pi/4) = -\frac{\sqrt{2}}{2}$$

## Пример

Вычислить синус и косинус t при:  $t = -49\pi/3$ 

#### Решение:

T.к. числам t и  $t+2\pi$ •k (k-целое число) соответствует одна и тоже точка числовой окружности то:

$$-49\pi/3 = -(16 + 1/3) \cdot \pi = -16\pi + (-\pi/3) = (-\pi/3) + 2\pi \cdot (-8)$$
Воспользуемся свойством  $\sin(t + 2\pi \cdot k) = \sin(t)$ ,  $\cos(t + 2\pi \cdot k) = \cos(t)$   $\sin(-\pi/3 + 2\pi \cdot (-8)) = \sin(-\pi/3)$   $\cos(-\pi/3 + 2\pi \cdot (-8)) = \cos(-\pi/3)$ 
Воспользуемся свойством  $\sin(-t) = -\sin(t)$ ,  $\cos(-t) = \cos(t)$   $\sin(-\pi/3) = -\sin(\pi/3)$   $\cos(-\pi/3) = \cos(\pi/3)$ 

Из таблицы значений синуса и косинуса получаем:

$$\sin(-49\pi/3) = -\frac{\sqrt{3}}{2}$$
$$\cos(-49\pi/3) = \frac{1}{2}$$

Решить уравнение a) 
$$sin(t) = \frac{\sqrt{3}}{2}$$
, б)  $sin(t) > \frac{\sqrt{3}}{2}$ 

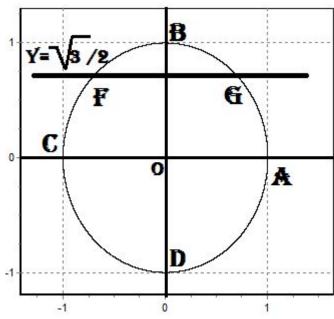
#### Решение:

sin(t) — из определения, это ордината точки числовой окружности. Значит на числовой окружности нужно найти точки с ординатой

 $\frac{\sqrt{3}}{2}$  и записать, каким числам t, они соответствуют - точки F и G на рисунке.

- а) Точка F и G имееют координаты:  $\pi/3 + 2 \pi \cdot k$  и  $2\pi/3 + 2 \pi \cdot k$
- б) Уравнению у >  $\frac{1}{2}$  это дуга FG тогда:  $\pi/3 + 2 \pi \cdot k < t < 2\pi/3 + 2 \pi \cdot k$

**Omsem**: a) 
$$t = \pi/3 + 2 \pi \cdot k$$
 u  $t = 2\pi/33 + 2 \pi \cdot k$   
6) $\pi/3 + 2 \pi \cdot k < t < 2\pi/3 + 2 \pi \cdot k$ 



## Пример

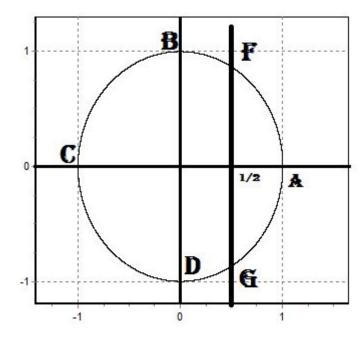
Решить уравнение a)cos(t)=1/2 б) cos(t)>1/2

cos(t) — из определения, это абсцисса точки числовой окружности. Значит на числовой окружности нужно найти точки с абсциссой равной 1/2 и записать, каким числам t, они соответствуют — точки F и G на рисунке

- а) Точка F и G соответствуют координаты:  $-\pi/3 + 2 \pi \cdot k$  и  $\pi/3 + 2 \pi \cdot k$
- б) Уравнению x > 1/2 соответствует дуга FG тогда:  $-\pi/3 + 2 \pi \cdot k < t < \pi/3 + 2 \pi \cdot k$

Ombem: a)  $t = -\pi/3 + 2 \pi \cdot k u \ t = \pi/3 + 2 \pi \cdot k$ 

$$6) -\pi/3 + 2 \pi \cdot k < t < \pi/3 + 2 \pi \cdot k$$



## Пример

## Вычислить тангенс и котангенс t при: $t = -7\pi/3$

#### Решение:

T.к. числам t и  $t+2\pi \cdot k$  (k-целое число) соответствует одна и тоже точка числовой окружности то:

$$-7\pi/3 = -(2+1/3) \cdot \pi = -2\pi + (-\pi/3) = (-\pi/3) + 2\pi$$
Воспользуемся свойством  $tg(x+\pi \cdot k) = tg(x)$ ,  $ctg(x+\pi \cdot k) = ctg(x)$   $tg((-\pi/3) + 2\pi) = tg(-\pi/3)$   $ctg((-\pi/3) + 2\pi) = ctg(-\pi/3)$ 
Воспользуемся свойством  $tg(-x) = -tg(x)$ ,  $ctg(-x) = -ctg(x)$   $tg(-\pi/3) = -tg(\pi/3)$   $ctg(-\pi/3) = -ctg(\pi/3)$  Из таблицы значений получаем:  $tg(-7\pi/3) = -tg(\pi/3) = -\sqrt{3}$   $ctg(-7\pi/3) = -ctg(\pi/3) = -\sqrt{3}$ 

## Задачи для самостоятельного решения.

- 1) Вычислить синус и косинус t при:  $t=61\pi/6$ ,  $t=-52\pi/3$
- 2) Решить уравнение a)  $\sin(t) = -\frac{1}{2}$ , б)  $\sin(t) > -\frac{1}{2}$  в)  $\sin(t) < -\frac{1}{2}$
- 3) Решить уравнение a)  $\cos(t) = -\frac{1}{2}$ , б)  $\cos(t) > -\frac{1}{2}$ , в)  $\cos(t) < \frac{1}{2}$ ,
- 4) Вычислить тангенс и котангенс t при: a)  $t=19\pi/6$  б)  $t=41\pi/4$