In
$$f_{a,\sigma^2}(\xi_1) = \frac{(\xi_1 - a)}{\sigma^2}$$
 Решение уравнений $f(x) \cdot \frac{\partial}{\partial \theta} f(x,\theta) dx = M$ и неравенств с параметром.

$$(S) = \frac{\partial}{\partial \theta} \int_{\mathbf{R}_n} T(x) f(x, t)$$

$$\frac{-\ln f_{a,\sigma^2}(\xi_1) = \frac{(\xi_1 - a)}{\sigma^2}}{\sigma^2}$$

$$T(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) dx = M$$

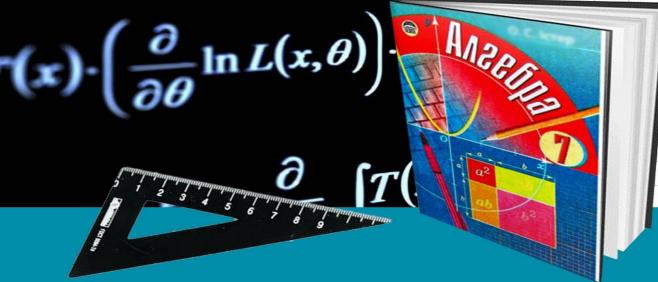
Сравнить –а и За

Рассмотрим 3 случая:

Если a<0, то -a >3a;

Если a = 0, то -a = 3a;

Если a > 0, то -a < 3a.



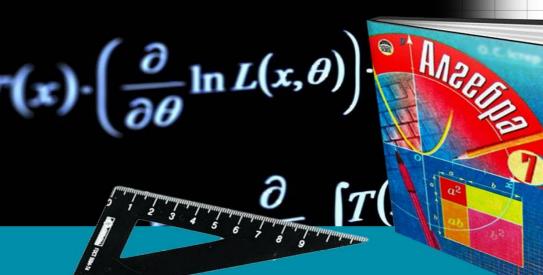
Решить уравнение ax = 1.

$$-\ln f_{a,\sigma^2}(\xi_1) = \frac{(\xi_1 - a)}{\sigma^2}$$

$$X=\frac{1}{a}$$

$$f(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) dx = M$$

но при а = 0 данное уравнение решений не имеет.



Ответ: если a = 0, то нет решений:

если
$$a\neq 0$$
, то $X=\frac{1}{a}$.

 $\int_{a_{0}}^{a_{0}} \int_{R_{n}}^{a_{0}} T(x)f(x)$ Решите неравенство ax < 0 $\int_{a_{0}}^{a_{0}} \int_{R_{n}}^{a_{0}} T(x)f(x)$ Возможны 3 случая:

$$\sigma^{2}$$
 Возможны 3 случая: 1) $a > 0$,

$$f(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) dx = M \begin{pmatrix} 1 & a > 0, \\ 7(2) & a < 0, \\ 3 & a = 0. \end{pmatrix}$$

Ответ: если а < 0, то х >
$$\frac{1}{a}$$
; если а = 0, то х – любое число; если а> 0, то х < $\frac{1}{a}$.

 $\partial \theta_{R}^{T}$ (х) f(x) уравнение $(a^2 - 1)x = a + 1$

$$-\ln f_{a,\sigma^2}(\xi_1) = \frac{(\xi_1 - a)}{\sigma^2}$$

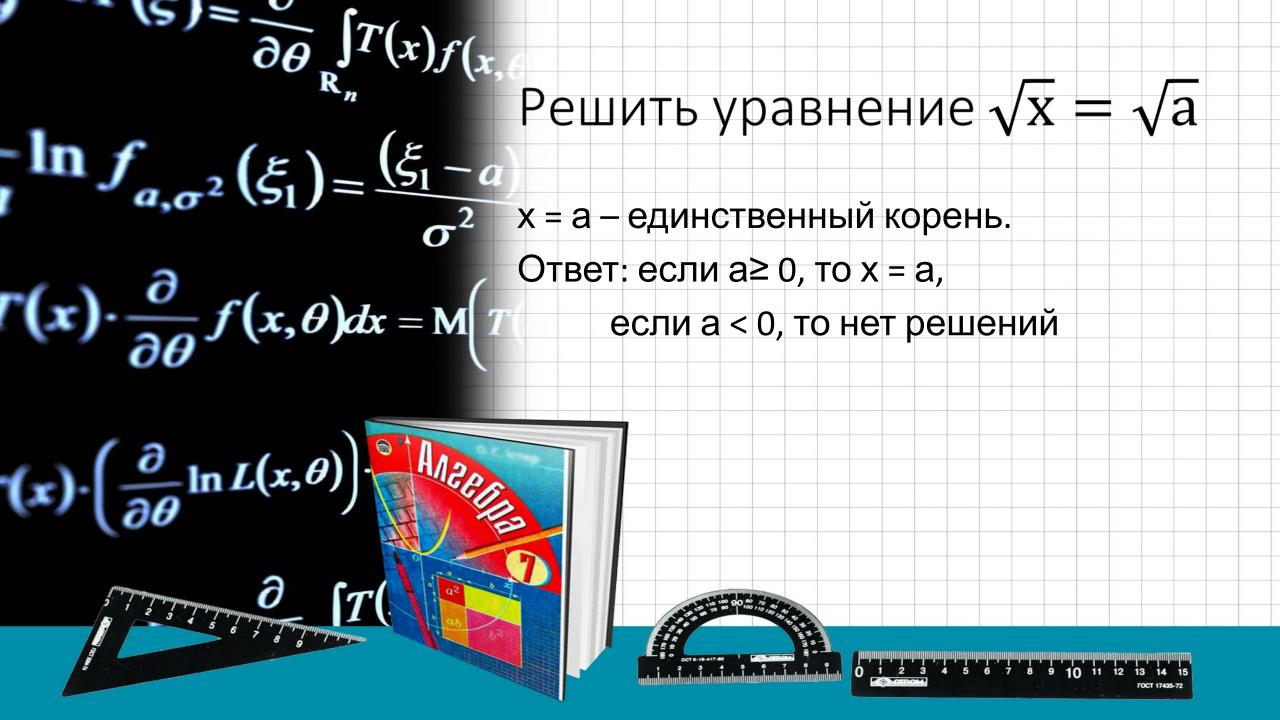
Рассмотрим три случая:

а =1; тогда уравнение принимает вид 0x = 2 и не имеет решений;

$$(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) dx = M(72) a = -1;$$
 получим $0x = x, x -$ любое число; $3) a \neq \pm 1;$ имеем $x = \frac{1}{a-1}$.

3)
$$a \neq \pm 1$$
; имеем $x = \frac{1}{a-1}$.

 $T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x, \theta)\right)$ Ответ: если а = 1, то нет решений; если a = -1, то x - любое число;если $a \neq \pm 1$; то $x = \frac{1}{a-1}$.



 $\partial \theta$ $\int_{R_n}^{T(x)} f(x) dx$ Решить неравенство (a-1) $\sqrt{X} \le 0$ $-\ln f_{a,\sigma^2}(\xi_1) = \frac{(\xi_1 - a)}{2}$ 2 Ответ зависит от знака двучлена (a-1) Если а≤ 1, то х – любое неотрицательное число $\frac{\partial}{\partial \theta} f(x, \theta) dx = M$ Если a > 1, то х – люоое неотрицательного $(x, \theta) dx = M$ Если a > 1, то левая часть неравенства неотрицательна, поэтому х = 0 – единственное решение. $(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x, \theta)\right)$ Ответ: если $a \le 1$, то $x \ge 0$; если a > 1, то x = 0.