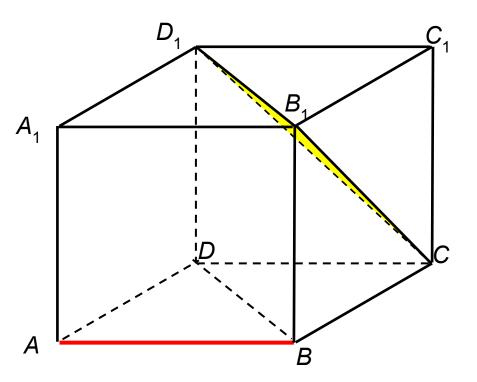
Угол между прямой и плоскостью. Подготовка к ЕГЭ



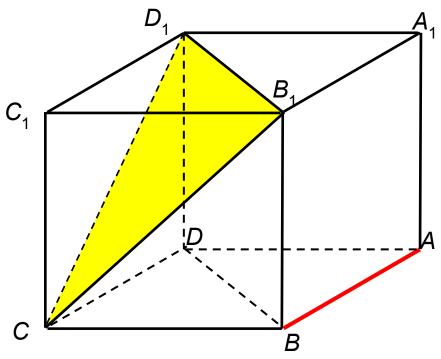
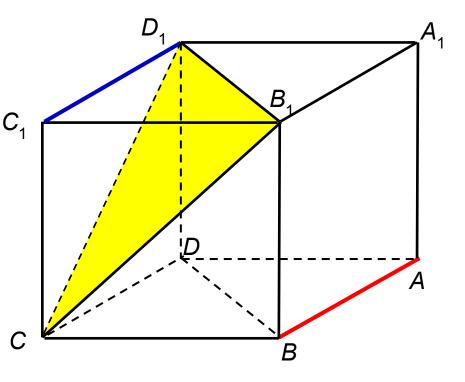
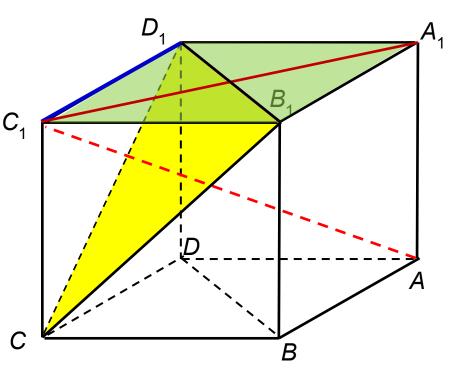


Рисунок неудачный: плоскость треугольника CB₁D₁ плохо просматривается

Поменяли местами буквы A и A₁. Теперь все хорошо просматривается.



Так как $AB \| C_1 D_1$, то угол между прямой AB и пл. $CB_1 D_1$ равен углу между прямой $C_1 D_1$ и пл. $CB_1 D_1$.



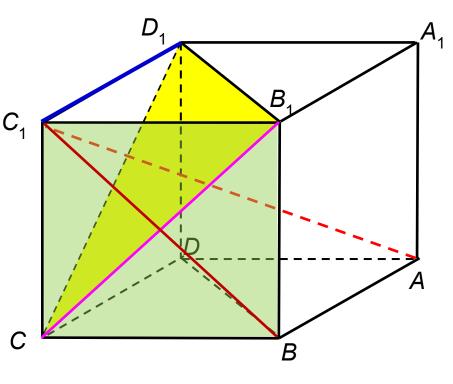
Так как $AB \| C_1 D_1$, то угол между прямой AB и пл. $CB_1 D_1$ равен углу между прямой $C_1 D_1$ и пл. $CB_1 D_1$.

 $A_1^C_1$ является проекцией наклонной AC_1 на пл. $A_1^B_1^C_1^D_1$

По теореме о трех перпендикулярах

B₁D₁
$$\perp$$
 AC₁

(прямая $\mathbf{B_1}\mathbf{D_1}$ лежит в плоскости $\mathbf{A_1}\mathbf{B_1}\mathbf{C_1}\mathbf{D_1}$ и перпендикулярна к проекции $\mathbf{A_1}\mathbf{C_1}$ наклонной $\mathbf{AC_1}$ на плоскость $\mathbf{A_1}\mathbf{B_1}\mathbf{C_1}\mathbf{D_1}$ поэтому она $(\mathbf{B_1}\mathbf{D_1})$ перпендикулярна и к самой наклонной $\mathbf{AC_1}$)



Аналогично $CB_1 \perp AC_1$

Так как $AB \| C_1D_1$, то угол между прямой AB и пл. CB_1D_1 равен углу между прямой C_1D_1 и пл. CB_1D_1 .

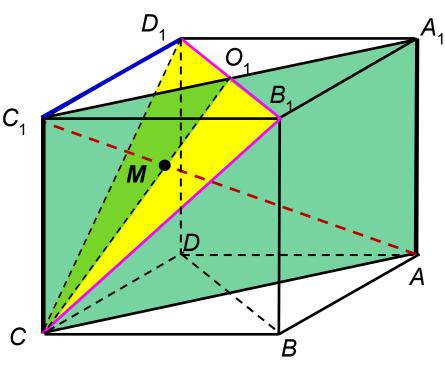
 $A_1^C_1$ является проекцией наклонной AC_1 на пл. $A_1^B_1^C_1^D_1$

По теореме о трех перпендикулярах

B₁D₁
$$\perp$$
 AC₁

(прямая $\mathbf{B_1}^{\mathbf{D_1}}$ лежит в плоскости $\mathbf{A_1}^{\mathbf{B_1}}\mathbf{C_1}^{\mathbf{D_1}}$ и перпендикулярна к проекции $\mathbf{A_1}^{\mathbf{C_1}}$ наклонной $\mathbf{AC_1}$ на плоскость $\mathbf{A_1}^{\mathbf{B_1}}\mathbf{C_1}^{\mathbf{D_1}}$ поэтому она $(\mathbf{B_1}^{\mathbf{D_1}})$ перпендикулярна и к самой наклонной $\mathbf{AC_1}$)

(прямая ${\sf CB}_1$ лежит в плоскости ${\sf CC}_1{\sf B}_1{\sf B}$ и перпендикулярна к проекции ${\sf BC}_1$ на плоскость ${\sf CC}_1{\sf B}_1{\sf B}$ поэтому она $({\sf CB}_1)$ перпендикулярна и к самой наклонной ${\sf AC}_1$)

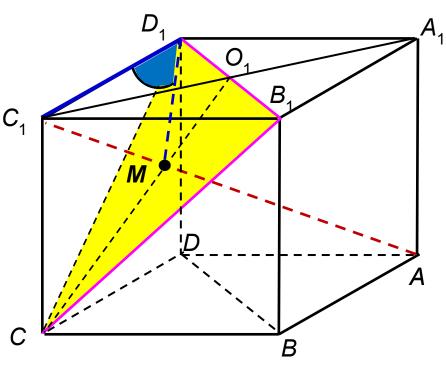


Итак, прямая AC_1 перпендикулярна к двум пересекающимся прямым B_1D_1 и CB_1 , лежащим в плоскости CB_1D_1 , значит, эта прямая перпендикулярна плоскости CB_1D_1 .

Построим точку пересечения прямой AC_1 с плоскостью CB_1D_1 .

Прямая \mathbf{AC}_1 лежит в диагональной плоскости $\mathbf{AA}_1\mathbf{C}_1\mathbf{C}$, которая пересекает верхнюю грань $\mathbf{A}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$ по прямой $\mathbf{A}_1\mathbf{C}_1$, а плоскость $\mathbf{CB}_1\mathbf{D}_1$ по прямой $\mathbf{O}_1\mathbf{C}$, где \mathbf{O}_1 — центр квадрата $\mathbf{A}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$.

Прямые AC_1 и CO_1 лежат в одной плоскости AA_1C_1C и пересекаются в некоторой точке M, которая и является точкой пересечения прямой AC_1 с плоскостью CB_1D_1 .



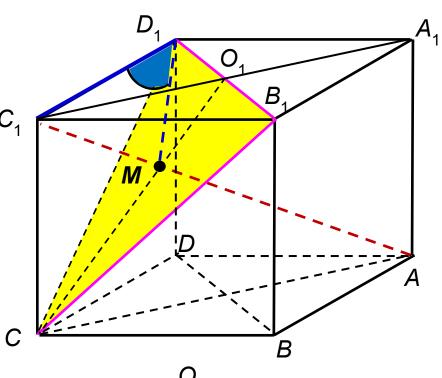
Итак, прямая AC_1 перпендикулярна к двум пересекающимся прямым B_1D_1 и CB_1 , лежащим в плоскости CB_1D_1 , значит, эта прямая перпендикулярна плоскости CB_1D_1 .

Построим точку пересечения прямой AC_1 с плоскостью CB_1D_1 .

Прямая \mathbf{AC}_1 лежит в диагональной плоскости $\mathbf{AA}_1\mathbf{C}_1\mathbf{C}$, которая пересекает верхнюю грань $\mathbf{A}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$ по прямой $\mathbf{A}_1\mathbf{C}_1$, а плоскость $\mathbf{CB}_1\mathbf{D}_1$ по прямой $\mathbf{O}_1\mathbf{C}$, где \mathbf{O}_1 — центр квадрата $\mathbf{A}_1\mathbf{B}_1\mathbf{C}_1\mathbf{D}_1$.

Прямые AC_1 и CO_1 лежат в одной плоскости AA_1C_1C и пересекаются в некоторой точке M, которая и является точкой пересечения прямой AC_1 с плоскостью CB_1D_1 .

Таким образом, C_1M — перпендикуляр к плоскости $\frac{CB_1D_1}{C_1D_1}$. Тогда MD_1 - проекция C_1D_1 на эту плоскость CB_1D_1 и угол C_1D_1M — искомый угол прямой C_1D_1 (а, значит, и AB) с плоскостью CB_1D_1



Треугольники C_1MO_1 и АМС подобны по двум углам . Откуда

$$\frac{C_1M}{MA} = \frac{C_1O_1}{AC} = \frac{1}{2}$$

Значит, $C_1 M = k$, MA = 2k, $C_1 A = 3k$ $C_1 M = \frac{1}{3} AC$

Пусть ребро куба равно a. Тогда

$$AC_1 = a\sqrt{3}$$
 $C_1M = \frac{1}{3}AC_1 = \frac{1}{3}a\sqrt{3}$

Из прямоугольного треугольника C₁MD₁

$$C_1$$
 M
 A_1
 A_2
 A_3
 A_4

$$\sin \angle C_1 D_1 M = \frac{C_1 M}{C_1 D_1} = \frac{\frac{1}{3} a \sqrt{3}}{a} = \frac{\sqrt{3}}{3}$$

Опорная, ключевая задача. (Задача предок)

Докажите, что диагональ AC_1 параллелепипеда $A...D_1$ проходит через точки пересечения медиан треугольников A_1BD и CB_1D_1 и делится ими на три равные части.

Задача 372. Геометрия 10-11: Учеб. для общеобразоват. учреждений / Л. С. Атанасян и др. 11-е изд. - М.: Просвещение, 2002.

