

CBONCTBO CTATAHN C

натуральным показателем.

Бузецкая Татьяна Валерьевна, ГБОУ СОШ 523 Санкт-Петербурга

Пусть кто-нибудь попробует вычеркнуть из математики степени, и он увидит, что без них далеко не уедешь.

M.B.

Ломоносов

Цель урока:

- 1. обобщить знания о степени с натуральным показателем
- 2. закрепить и усовершенствовать навыки простейших преобразований выражений, содержащих степень с натуральным показателем.
 - 3. Узнать основные свойства степеней

СТЕПЕНЬ и ее свойства

$$7.7.7.7.7=7^{5}$$

$$\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ pa3}} = a^n$$

7

an Показатель

Основание

$$a^1=a$$

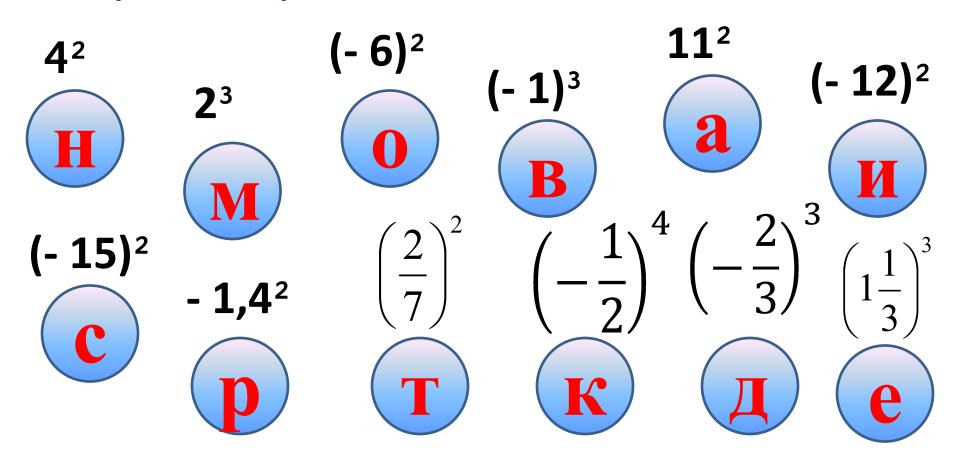
$$O^n = O$$

$$(-3)\cdot(-3)\cdot(-3)\cdot(-3)=81$$

 $(-5)\cdot(-5)\cdot(-5)=-125$
 $(-6)^2=36$
 $-6^2=-36$

225	144	8	36	16

225	$\frac{4}{49}$	$2\frac{10}{27}$	- 1	144	16


11-

- 1,96	$2\frac{10}{27}$	16	$2\frac{10}{27}$

$-\frac{8}{27}$	$2\frac{10}{27}$	$\frac{1}{16}$	121	- 1,96	$\frac{4}{49}$

История создания современной теории степеней

Выполните вычисления. Заполните таблицы буквами, учитывая найденные ответы.

225	144	8	36	16
C	И	M	0	н

C	Т	е	В	И	н
225	$\frac{4}{49}$	$2\frac{10}{27}$	- 1	144	16

- 1,96	$2\frac{10}{27}$	16	$2\frac{10}{27}$
р	е	Н	е

$-\frac{8}{27}$	$2\frac{10}{27}$	$\frac{1}{16}$	121	- 1,96	$\frac{4}{49}$
Д	е	К	a	р	Т

Симон Сте́вин (нидерл. Simon Stevin, 1548—1620) — фламандский математикуниверсал, инженер.

Нидерландский математик Симон Стевин в 16-17 веках предпринял первые шаги к построению современной теории степени. Он обозначал неизвестную величину кружком, а внутри его указывал показатели степени.

$$3^3 + 5^2 - 4$$

Мыслю, следовательно существую.

Рене Декарт

Французский философ и математик.

Современная запись показателя степени введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2. Позднее Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложил Стевин.

Примеры	Буквенная запись свойства	Словесная формулировка
$2^{2} \cdot 2^{4} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =$ $= 2^{6} = 64$ $a^{5} \cdot a^{4} = a^{5+4} = a^{9}$	$a^n \cdot a^k = a^{n+k}$	При умножении степеней с одинаковыми основанием показатели складываем, основание остается прежнее.

$$3^6: 3^4 = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3} = 3^2 = 9$$

$$a^5: a^4 = a^{5-4} = a$$

$$a^n:a^k=a^{n-k}$$

Примеры	Буквенная запись свойства	Словесная формулировка
$2^{2} \cdot 2^{4} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =$ $= 2^{6} = 64$ $a^{5} \cdot a^{4} = a^{5+4} = a^{9}$	$a^n \cdot a^k = a^{n+k}$	При умножении степеней с одинаковыми основанием показатели складываем, основание остается прежнее.
$3^{6}:3^{4} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3} = 3^{2} = 9$ $a^{5}:a^{4} = a^{5-4} = a$	a ⁿ :a ^k =a ^{n-k}	При делении степеней с одинаковыми основанием показатели вычитаем, основание остается прежнее.

$$(a \cdot e)^n = a^n \cdot e^n$$

$$(5 \cdot 6)^3 = 5^3 \cdot 6^3$$
$$(3x)^4 = 3^4 \cdot x^4 = 81x^4$$

$$\left(\frac{a}{\theta}\right)^n = \frac{a^n}{\theta^n}$$

$$\left(\frac{9}{5}\right)^2 = \frac{9^2}{5^2} = \frac{81}{25}$$

Примеры	Буквенная запись свойства	Словесная формулировка
$2^{2} \cdot 2^{4} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =$ $= 2^{6} = 64$ $a^{5} \cdot a^{4} = a^{5+4} = a^{9}$	$a^n \cdot a^k = a^{n+k}$	При умножении степеней с одинаковыми основанием показатели складываем, основание остается прежнее.
$3^{6}:3^{4} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3} = 3^{2} = 9$ $a^{5}:a^{4} = a^{5-4} = a$	a ⁿ :a ^k =a ^{n-k}	При делении степеней с одинаковыми основанием показатели вычитаем, основание остается прежнее.
$(5 \cdot 6)^3 = 5^3 \cdot 6^3$ $(3x)^4 = 3^4 \cdot x^4 = 81x^4$	$(a \cdot e)^n = a^n \cdot e^n$	При возведении произведения в степень каждый множитель возводим в степень.
$\left(\frac{9}{5}\right)^2 = \frac{9^2}{5^2} = \frac{81}{25}$	$\left(\frac{a}{e}\right)^n = \frac{a^n}{e^n}$	При возведении дроби в степень числитель и знаменатель возводим в эту степень

$$(a^n)^k = a^{n \cdot k}$$

$$(5^3)^2 = 5^{3 \cdot 2} = 5^6 = 15625$$

$$(x^7)^4 = x^{7\cdot 4} = x^{28}$$

Примеры	Буквенная запись свойства	Словесная формулировка
$2^{2} \cdot 2^{4} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =$ $= 2^{6} = 64$	$a^n \cdot a^k = a^{n+k}$	При умножении степеней с одинаковыми основанием показатели складываем, основание остается прежнее.
$a^5: a^4 = a^{5-4} = a$	a ⁿ :a ^k =a ^{n-k}	При делении степеней с одинаковыми основанием показатели вычитаем, основание остается прежнее.
$(5 \cdot 6)^3 = 5^3 \cdot 6^3$ $(3x)^4 = 3^4 \cdot x^4 = 81x^4$	$(a \cdot e)^n = a^n \cdot e^n$	При возведении произведения в степень каждый множитель возводим в степень.
$\left(\frac{9}{5}\right)^2 = \frac{9^2}{5^2} = \frac{81}{25}$	$\left(\frac{a}{s}\right)^n = \frac{a^n}{s^n}$	При возведении дроби в степень числитель и знаменатель возводим в эту степень
$(5^3)^2 = 5^{3 \cdot 2} = 5^6 = 15625$ $(x^7)^4 = x^{7 \cdot 4} = x^{28}$	$(a^{\kappa})^n = a^{n \cdot \kappa}$	При возведении степени в степень основание остается без изменения, а показатели перемножаются.

Работа по учебнику

```
CTp.77 № 160 (2,4)
№ 161 (2,4)
№ 167(2,4)
№ 168 (2,4)
```

«Лист самооценки»

Получил удовольствие Узнал что-то новое Ничего не понял Научился **У**дивился **Р**асстроился

Домашняя работа

Учить таблицу, читать стр. 73-76

```
№ 160 (нечетные)
```

№ 161 (нечетные)

№ 167(нечетные)

№ 168 (нечетные)

№ 1 (вводные упражнения)