в знакомстве с фактами, которое делает человека лишь педантом, а в использовании фактов, которое делает его _{Г. Бокль}

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 49 г. о. Тольятти

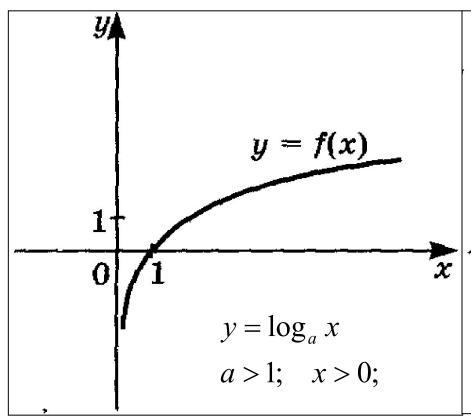
Открытый урок в 11 «Б» классе (группа №1 информационно-технологический профиль) по теме: «Логарифмы. Логарифмическая функция. Решение логарифмических уравнений»

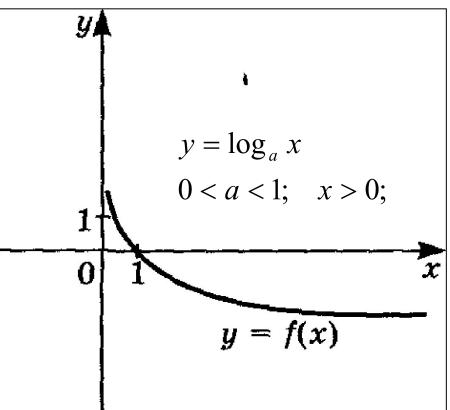
учитель математики: Людмила Викторовна Добровольская 05.02.2014

Цель:

- обобщение и систематизация
 теоретического материала по данной теме;
- отработка умений и навыков применения формул для преобразования логарифмических выражений и решения уравнений;
- развитие навыков работы с дополнительной литературой, с историческим материалом.

• Задачи:

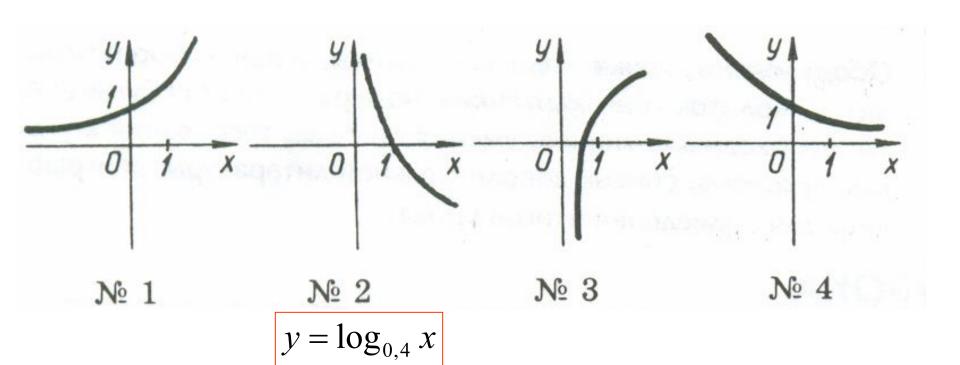

- повторить формулы, относящиеся к теме «Логарифмическая функция»;
- закрепить умения преобразовывать логарифмические выражения и решать логарифмические уравнения (подготовка к ЕГЭ);
- формировать интерес к изучению математики;
- продемонстрировать, как используются логарифмы в различных областях знаний, показать, что в основе многих физических, химических. . . процессов лежат математические закономерности.


«Логарифмический дартс» 2 210825 $\lg 8 + \lg 125$ Jogn XX lg 0,01 log₁ 2 1000 18100 log₂₅ 125 1000 \$ 60 lg13027 108 5 125 ∞ \log_{16} \log_{100} lg13- \log_{27} lg. $\log_2 32$ log₂ 8 1000 $\log_{\frac{1}{3}}\overline{9}$ 10°04 1000 9 1082 1000-32 N 10 108% 260033 100,001 $\log_{81} 27$ 10848 $\log_3 \frac{1}{243}$ 10825 $\log_{\sqrt{7}} 49$

Лови ошибку!

Понятия	Формулы
1.Определение логарифма числа по заданному основанию	$\log_a a^c = c$
2. Основное логарифмическое тождество.	$\log_a b = \frac{\log_c b}{\log_c a}; \log_a b = \frac{1}{\log_b a}$
3. Формула логарифм произведения.	$\log_a 1 = 0$
4. Формула логарифм частного.	$\log_a b \log_b a = 1$
5. Формула логарифм степени.	$\log_a b^n = n \log_a b$
6. Формула логарифмического перехода от одного основания к другому основанию.	$a^{\log_a c} = c$
7. Логарифм, значение которого равно единице	$\log_{\dot{a}} \frac{x_1}{x_2} = \log_{\dot{a}} x_1 - \log_{\dot{a}} x_2$
8. Логарифм, значение которого равно нулю	$\log_{\dot{a}} x_1 x_2 = \log_{\dot{a}} x_1 + \log_{\dot{a}} x_2$
9. Запись числа через логарифм	$\log_a b = x \Leftrightarrow b = a^x, a > 0, a \neq 1, b > 0$

Перечислите основные свойства функций



$$D(y) = R_{+}$$
 $a > 1$, $E(y) = R_{+}$ функция возрастает на $D(y)$ функция общего вида

$$D(y) = R_{+}$$
 $E(y) = R$ $0 < a < 1$, функция убывает на $D(y)$ функция общего вида

Какой график является графиком ϕ ункции $y = \log_{0.4} x$?

Определите, какие из перечисленных ниже функций являются возрастающими, а какие

2 > 1 $y = log_{2}x$ возрастающая 0 < 0.5 < 1 $y = log_{0.5}(2x + 5)$ убывающая $y = \lg(x)^{1/2}$ 10 > 1 возрастающая y = ln(x + 2)e > 1возрастающая

Найти область определения функции

$$y = \log_{0,5}(3 - 2x)$$

$$3 - 2x > 0$$

-2x > -3

1)
$$(-\infty; 1,5);$$

2)
$$(-\infty; -1,5);$$

3)
$$(1,5;+\infty);$$

4)
$$(-\infty;1,5]$$

$$x < \frac{3}{2}$$

Логарифмическая «комедия 2>3»

$$\frac{1}{4} > \frac{1}{8} \implies \left(\frac{1}{2}\right)^2 > \left(\frac{1}{2}\right)^3 \implies$$

$$\lg\left(\frac{1}{2}\right)^{2} > \lg\left(\frac{1}{2}\right)^{3} \Rightarrow 2\lg\left(\frac{1}{2}\right) > 3\lg\left(\frac{1}{2}\right) \Rightarrow 2 > 3$$

В чем ошибка этого доказательства?

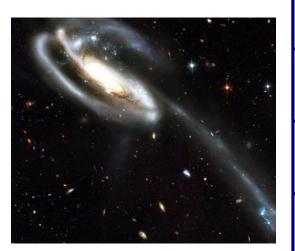
Логарифмическая «комедия 2>3» Решение:

$$\lg\left(\frac{1}{2}\right) < 0 \implies 2\lg\left(\frac{1}{2}\right) > 3\lg\left(\frac{1}{2}\right)$$

M

Определить метод решения уравнений

Уравнения	Методы решения
$\log_a f(x) = b$	По определению логарифма
$\log_a f(x) = \log_a g(x)$	Метод потенцирования
$\log_{a(x)} f(x) = \log_{b(x)} f(x)$	Метод приведения к одному основанию
$f_1(x)^{f_2(x)} = f_3(x)$	Метод логарифмирования
$\log^2 f(x) + \log f(x) = c$	Метод подстановки
$a^{\log_a f(x)} = b^{\log_b g(x)}$	Использование основного логарифмического тождества
$\log_a f(x) + \log_a g(x) = c$	Сворачивание в один логарифм


Проба сил

<i>А</i> ₁ Решите уравнение	$\log_2(x-1) = 3$	
A_2 Вычислите	$\log_{13} 17 - \log_{13} \frac{17}{169}$	
<i>А</i> ₃ Решите уравнение	$\log_6 2x = 2 + \log_6 2.$	
A_4 Упростите выражение	$2^{\log_2 7} + 2\log_5 15 - \log_5 9.$	
A_5 Найдите область определения функции, укажите наименьшее положительное число. $y = \log_2(x^2 - x)$		
A_6 Вычислите	$\log_3\log_3\log_33^{27}$	

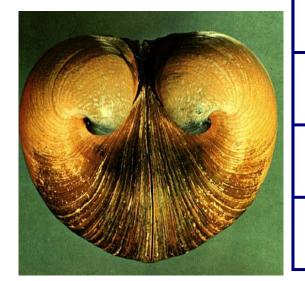
Ответы: 9236921

Логарифмы в жизни и быту

История возникновения логарифмов

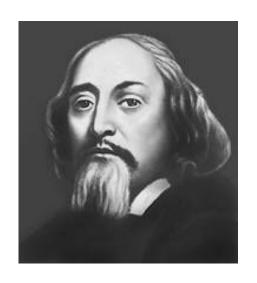
Логарифмические диковинки

Логарифмы и экономика


Логарифмическая спираль

Логарифмы в астрономии

Логарифмы в музыке


Логарифмы в литературе

Логарифмы и психология

Домашнее задание.

- если со всеми предложенными заданиями Вы справились без ошибок, то Ваше домашнее задание:17.40,17.41,17.42;
- если при выполнении предложенных заданий Вы испытывали затруднения и не смогли всё выполнить правильно, то Ваше домашнее задание:17.16, 17.18,17.19.

« СЧИТАЙ НЕСЧАСТНЫМ ТОТ ДЕНЬ ИЛИ ЧАС, В КОТОРЫЙ ТЫ НЕ УСВОИЛ НИЧЕГО НОВОГО И НИЧЕГО НЕ ПРИБАВИЛ К СВОЕМУ ОБРАЗОВАНИЮ.»

Я. А. КОМЕНСКИЙ

CHACHE BANDING

1